Метод Лупанова синтеза схем — различия между версиями
Dimatomp (обсуждение | вклад) м (→Доказательство: небольшое пояснение) |
Dimatomp (обсуждение | вклад) м (повысил читаемость формул) |
||
Строка 15: | Строка 15: | ||
== Разделение на полосы == | == Разделение на полосы == | ||
− | Разделим таблицу на горизонтальные полосы шириной <tex>s</tex> (последняя полоса, возможно, будет короче остальных; её длину обозначим <tex>s'</tex>). Пронумеруем полосы сверху вниз от 1 до <tex>p=\lceil\frac{2^k}{s}\rceil</tex>. | + | Разделим таблицу на горизонтальные полосы шириной <tex>s</tex> (последняя полоса, возможно, будет короче остальных; её длину обозначим <tex>s'</tex>). Пронумеруем полосы сверху вниз от 1 до <tex>p=\left\lceil\frac{2^k}{s}\right\rceil</tex>. |
Рассмотрим независимо некоторую полосу. Среди её столбцов при небольшом <tex>s</tex> будет много повторений, поэтому введём понятие '''''сорта''''' столбца. | Рассмотрим независимо некоторую полосу. Среди её столбцов при небольшом <tex>s</tex> будет много повторений, поэтому введём понятие '''''сорта''''' столбца. | ||
Строка 39: | Строка 39: | ||
=== Вывод исходной функции для фиксированной части параметров === | === Вывод исходной функции для фиксированной части параметров === | ||
Поскольку изначальный столбец <tex>(\sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n})</tex> складывается из столбцов соответствующих сортов в полосах, | Поскольку изначальный столбец <tex>(\sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n})</tex> складывается из столбцов соответствующих сортов в полосах, | ||
− | <tex>f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n}) = \bigvee\limits_{i = 1}^p g_{ij_i}(x_1, x_2, ..., x_k)</tex>, | + | <tex dpi="145">f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n}) = \bigvee\limits_{i = 1}^p g_{ij_i}(x_1, x_2, ..., x_k)</tex>, |
где <tex>j_i</tex> {{---}} номер сорта столбца полосы <tex>i</tex>, являющегося соответствующей частью столбца <tex>(\sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n})</tex>. | где <tex>j_i</tex> {{---}} номер сорта столбца полосы <tex>i</tex>, являющегося соответствующей частью столбца <tex>(\sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n})</tex>. | ||
Строка 66: | Строка 66: | ||
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции <tex>f(x_1, x_2, ..., x_n)</tex> (представление Лупанова). Для удобства поделим схему на блоки: | В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции <tex>f(x_1, x_2, ..., x_n)</tex> (представление Лупанова). Для удобства поделим схему на блоки: | ||
* '''Блок A''' {{---}} дешифратор, которому на вход подали 1 и <tex>(x_1, x_2, ..., x_k)</tex> в качестве двоичного представления числа. | * '''Блок A''' {{---}} дешифратор, которому на вход подали 1 и <tex>(x_1, x_2, ..., x_k)</tex> в качестве двоичного представления числа. | ||
− | * '''Блок B''' {{---}} схемная реализация всех <tex>g_{ij}</tex>. Функцию <tex>g_{ij}</tex> можно реализовать как <tex>\bigvee\limits_{\beta_l = 1} y_{il}</tex>, где <tex>y_{il}</tex> {{---}} выдал ли дешифратор "1" на <tex>l</tex>-м выходе <tex>i</tex>-й полосы. | + | * '''Блок B''' {{---}} схемная реализация всех <tex>g_{ij}</tex>. Функцию <tex>g_{ij}</tex> можно реализовать как <tex dpi="145">\bigvee\limits_{\beta_l = 1} y_{il}</tex>, где <tex>y_{il}</tex> {{---}} выдал ли дешифратор "1" на <tex>l</tex>-м выходе <tex>i</tex>-й полосы. |
* '''Блок C''' {{---}} схемная реализация всех <tex>f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_n)</tex>. | * '''Блок C''' {{---}} схемная реализация всех <tex>f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_n)</tex>. | ||
* '''Блок D''' {{---}} мультиплексор, получающий на вход все <tex>f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_n)</tex> и параметры функции <tex>x_{k + 1}, x_{k + 2}, ..., x_n</tex> в качестве двоичного представления числа. '''''Результат работы схемы''''' {{---}} вывод мультиплексора. | * '''Блок D''' {{---}} мультиплексор, получающий на вход все <tex>f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_n)</tex> и параметры функции <tex>x_{k + 1}, x_{k + 2}, ..., x_n</tex> в качестве двоичного представления числа. '''''Результат работы схемы''''' {{---}} вывод мультиплексора. | ||
Положим <tex>s = [n - 2\log_2 n]</tex>; <tex>k = [\log_2 n]</tex>. Тогда число элементов в блоках | Положим <tex>s = [n - 2\log_2 n]</tex>; <tex>k = [\log_2 n]</tex>. Тогда число элементов в блоках | ||
− | * <tex>L_A \sim 2^k \lesssim \frac{2^n}{n}</tex> | + | * <tex dpi="145">L_A \sim 2^k \lesssim \frac{2^n}{n}</tex> |
− | * <tex>L_B \leq (s - 1) \cdot (t(1) + t(2) + ... + t(p)) < sp \cdot 2^s = 2^{k + s} = \frac{2^n}{n}</tex> | + | * <tex dpi="145">L_B \leq (s - 1) \cdot (t(1) + t(2) + ... + t(p)) < sp \cdot 2^s = 2^{k + s} = \frac{2^n}{n}</tex> |
− | * <tex>L_C \sim p \cdot 2^{n - k} = \frac{2^n}{s} \sim \frac{2^n}{n}</tex> | + | * <tex dpi="145">L_C \sim p \cdot 2^{n - k} = \frac{2^n}{s} \sim \frac{2^n}{n}</tex> |
− | * <tex>L_D \sim 2^{n - k} = \frac{2^n}{n}</tex> | + | * <tex dpi="145">L_D \sim 2^{n - k} = \frac{2^n}{n}</tex> |
Итого, имеем схему с итоговым числом элементов <tex>\sim \frac{2^n}{n}</tex>, откуда следует, что <tex>size_B (f) \lesssim \frac{2^n}{n}</tex>, '''''ч.т.д.''''' | Итого, имеем схему с итоговым числом элементов <tex>\sim \frac{2^n}{n}</tex>, откуда следует, что <tex>size_B (f) \lesssim \frac{2^n}{n}</tex>, '''''ч.т.д.''''' |
Версия 21:56, 26 сентября 2013
Содержание
Формулировка
Теорема: |
Любая булева функция от аргументов при базисе имеет схемную сложность . |
Представление функции
Для начала поделим аргументы функции на два блока: первые
и оставшиеся .Для удобства дальнейших рассуждений представим булеву функцию в виде таблицы, изображённой на рис. 1.
- По горизонтали на ней представлены все значения (здесь и далее — фиксированное значение, — переменное);
- По вертикали на ней представлены все значения .
Таким образом, легко заметить, что значение
находится на пересечении строки и столбца .Разделение на полосы
Разделим таблицу на горизонтальные полосы шириной
(последняя полоса, возможно, будет короче остальных; её длину обозначим ). Пронумеруем полосы сверху вниз от 1 до .Рассмотрим независимо некоторую полосу. Среди её столбцов при небольшом
будет много повторений, поэтому введём понятие сорта столбца.Определение: |
Сорт столбца полосы — класс эквивалентности, к которому столбец принадлежит (два столбца эквивалентны, если совпадают по значениям). |
Число сортов столбцов
-й полосы обозначим как . Понятно, что для любой полосы (для последней ).Функция для одной полосы
Пусть для некоторого
- — столбец -й полосы -го сорта;
- — аргументы функции, соответствующие её значениям в -й строке -й полосы.
Тогда введём булеву функцию
Другими словами, если строка, соответствующая аргументам функции
, находится в -й полосе, то функция возвращает значение, записанное в столбце сорта для этой строки. Если же эта строка находится в другой полосе, то функция вернёт 0. Иллюстрация принципа работы функции приведена на рис. 2.Вывод исходной функции для фиксированной части параметров
Поскольку изначальный столбец
складывается из столбцов соответствующих сортов в полосах, , где — номер сорта столбца полосы , являющегося соответствующей частью столбца .Мультиплексор и дешифратор
Для упрощения доказательства теоремы введём элементы мультиплексор и дешифратор.
Определение: |
Мультиплексор — логический элемент, получающий на вход
|
Определение: |
Дешифратор — логический элемент, получающий на вход
|
Иллюстрации элементов приведены на рис. 3.
Можно доказать, что оба элемента представимы схемами с числом элементов
с помощью базиса .Доказательство
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции
(представление Лупанова). Для удобства поделим схему на блоки:- Блок A — дешифратор, которому на вход подали 1 и в качестве двоичного представления числа.
- Блок B — схемная реализация всех . Функцию можно реализовать как , где — выдал ли дешифратор "1" на -м выходе -й полосы.
- Блок C — схемная реализация всех .
- Блок D — мультиплексор, получающий на вход все и параметры функции в качестве двоичного представления числа. Результат работы схемы — вывод мультиплексора.
Положим
; . Тогда число элементов в блокахИтого, имеем схему с итоговым числом элементов
, откуда следует, что , ч.т.д.Ссылки
Литература
- Яблонский С.В. Введение в дискретную математику — М.:"Наука", 1986 — стр. 361