Метод Лупанова синтеза схем — различия между версиями
Dimatomp (обсуждение | вклад) м (→Доказательство: вдруг кто не понял) |
Dimatomp (обсуждение | вклад) (→Вывод исходной функции для фиксированной части параметров: пояснение про переменные и фиксированные) |
||
Строка 34: | Строка 34: | ||
Другими словами, если строка, соответствующая аргументам функции <tex>x_1, x_2, ..., x_k</tex>, находится в <tex>i</tex>-й полосе, то функция возвращает значение, записанное в столбце сорта <tex>j</tex> для этой строки. Если же эта строка находится в другой полосе, то функция вернёт 0. Иллюстрация принципа работы функции <tex>g_{ij}</tex> приведена на рис. 2. | Другими словами, если строка, соответствующая аргументам функции <tex>x_1, x_2, ..., x_k</tex>, находится в <tex>i</tex>-й полосе, то функция возвращает значение, записанное в столбце сорта <tex>j</tex> для этой строки. Если же эта строка находится в другой полосе, то функция вернёт 0. Иллюстрация принципа работы функции <tex>g_{ij}</tex> приведена на рис. 2. | ||
=== Вывод исходной функции для фиксированной части параметров === | === Вывод исходной функции для фиксированной части параметров === | ||
+ | ''Здесь и далее фиксированные параметры функции будут обозначаться <tex>\sigma_i</tex>, а переменные - <tex>x_i</tex>.'' | ||
+ | |||
Поскольку изначальный столбец <tex>(\sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n})</tex> складывается из столбцов соответствующих сортов в полосах, | Поскольку изначальный столбец <tex>(\sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n})</tex> складывается из столбцов соответствующих сортов в полосах, | ||
<tex dpi="145">f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n}) = \bigvee\limits_{i = 1}^p g_{ij_i}(x_1, x_2, ..., x_k)</tex>, | <tex dpi="145">f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_{n}) = \bigvee\limits_{i = 1}^p g_{ij_i}(x_1, x_2, ..., x_k)</tex>, |
Версия 19:51, 10 октября 2013
Теорема: |
Любая булева функция от аргументов при базисе имеет схемную сложность . |
Содержание
Представление функции
Поделим аргументы функции на два блока: первые
и оставшиеся .Для удобства дальнейших рассуждений представим булеву функцию в виде таблицы, изображённой на рис. 1. Строки индексируются значениями первых
переменных, столбцы — значениями оставшихся ; таким образом, на пересечении столбца и строки находится значение функции для соответствующего набора аргументов.Разделение на полосы
Разделим таблицу на горизонтальные полосы шириной
(последняя полоса, возможно, будет короче остальных; её длину обозначим ). Пронумеруем полосы сверху вниз от 1 до .Рассмотрим независимо некоторую полосу. Среди её столбцов при небольшом
будет много повторений, можно ввести понятие сорта столбца.Определение: |
Сорт столбца полосы — класс эквивалентности столбцов одной полосы, к которому рассматриваемый столбец принадлежит (два столбца эквивалентны, если совпадают по значениям). |
Число сортов столбцов
-й полосы обозначим как . Понятно, что для любой полосы (для последней ).Функция для одной полосы
Пусть для некоторого
- — столбец -й полосы -го сорта (точное положение столбца далее не будет иметь значение, см. определение сортов);
- — аргументы функции, соответствующие -й строке -й полосы.
Тогда введём булеву функцию
Другими словами, если строка, соответствующая аргументам функции
, находится в -й полосе, то функция возвращает значение, записанное в столбце сорта для этой строки. Если же эта строка находится в другой полосе, то функция вернёт 0. Иллюстрация принципа работы функции приведена на рис. 2.Вывод исходной функции для фиксированной части параметров
Здесь и далее фиксированные параметры функции будут обозначаться
, а переменные - .Поскольку изначальный столбец
складывается из столбцов соответствующих сортов в полосах, , где — номер сорта столбца полосы , являющегося соответствующей частью столбца .Мультиплексор и дешифратор
Для упрощения доказательства теоремы будем использовать элементы мультиплексор и дешифратор.
Определение: |
Мультиплексор (англ. multiplexer) — логический элемент, получающий на вход
|
Определение: |
Дешифратор (или демультиплексор, англ. demultiplexer) — логический элемент, получающий на вход
|
Можно доказать, что оба элемента представимы схемами с числом элементов
с помощью базиса .Доказательство
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции
(представление Лупанова, англ. Lupanov -representation).Для удобства поделим схему на блоки:
- Блок A — дешифратор, которому на вход подали 1 и в качестве двоичного представления числа.
- Блок B — схемная реализация всех . Функцию можно реализовать как , где — выдал ли дешифратор "1" на -м выходе -й полосы.
- Блок C — схемная реализация всех .
- Блок D — мультиплексор, получающий на вход все и параметры функции в качестве двоичного представления числа. Результат работы схемы — вывод мультиплексора.
Положим
; . Тогда число элементов в блокахИтого, имеем схему c числом элементов
, откуда следует, что , ч.т.д.Ссылки
Литература
- Яблонский С.В. Введение в дискретную математику — М.:"Наука", 1986 — стр. 361