Простейшие методы синтеза схем из функциональных элементов — различия между версиями
м (Незначительные исправления) |
м |
||
Строка 150: | Строка 150: | ||
::<tex> Size_{B}(n)\lesssim 12\frac {2^{n}}{2} </tex>. | ::<tex> Size_{B}(n)\lesssim 12\frac {2^{n}}{2} </tex>. | ||
− | Теорема доказана. | + | Теорема доказана.}} |
== Литература == | == Литература == | ||
* Яблонский С.В. Введение в дискретную математику. — 4-е изд. — М.: Высшая школа, 2003. — 384 с. — ISBN 5-06-004681-8 | * Яблонский С.В. Введение в дискретную математику. — 4-е изд. — М.: Высшая школа, 2003. — 384 с. — ISBN 5-06-004681-8 | ||
− | + | [[Категория:Дискретная математика и алгоритмы]] | |
+ | [[Категория: Схемы из функциональных элементов ]] |
Версия 00:21, 30 октября 2013
Приведем несколько простейших алгоритмов синтеза схем, в случае когда базис состоит из элементов: инвертора, конъюнктора и дизъюнктора.
Содержание
Метод синтеза, основанный на совершенной ДНФ
Лемма (1): |
Для любой конъюнкции |
Доказательство: |
Построим данную схему следующим образом: возьмем элементов отрицания, присоединенных к выходам, и цепочки из элементов конъюнкции, имеющих "свободных" входов.Каждый -й вход этой цепочки присоединяется к входу схемы, если -й множитель равен , или к выходу -го элемента отрицания, если -й множитель равен .(рис. 1)Очевидно, что сложность построенной схемы равна .Поэтому Лемма доказана. . |
Теорема (1): |
Имеет место неравенство |
Доказательство: |
Пусть булева функция. Если , то может быть задана нормальной дизъюнктивной формой произвольная
где и каждая конъюнкция имеет видСхема Леммой 1 имеет сложность не более ) и цепочки из элемента дизъюнкции с свободными входами. Свободные входы этой цепочки присоединяются к выходам схем для конъюнкций .(рис. 2) Имеем для состоит из конъюнкций (каждая из них в соответствии с
Если , то схема строится в соответствии с представлением , то есть .Таким образом, для любой функции выполняется неравенство
Поэтому Теорема доказана. . |
Метод синтеза, основанный на более компактной реализации множества всех конъюнкций
Лемма (2): |
Имеет место соотношение |
Доказательство: |
Разделим цепочки конъюнкций на две части. Каждая конъюнкция может быть представлена в виде конъюнкции двух конъюнкций длины и :
Поэтому схема для может быть образована из схем для и и системы из элементов конъюнкции, осуществляющих вышеприведенную операцию.(рис. 3) Следовательно,
Так как по Теореме 1 , ,то
Положим . Тогда , и
С другой стороны, при каждая конъюнкция реализуется на выходе некоторого элемента, то есть при выполняется неравенство . Таким образом,
|
Теорема (2): |
Имеет место соотношение . |
Доказательство: |
Пусть произвольная булева функция, . Заменим в схеме верхнюю часть схемы, реализующую конъюнкции , схемой, реализующей все конъюнкции из . Тогда для любой такой функции (не равной нулю) имеемТаким образом, |
Метод синтеза схем, предложенный К.Э.Шенноном
Теорема (3): |
Имеет место соотношение . |
Доказательство: |
Пусть произвольная булева функция. Рассмотрим разложение по переменным , где :. Схема для функции строится из трех подсхем: . (рис. 4)
Поэтому выполняется неравенство . Таким образом,
Положим (для упрощения дальнейших выкладок) . Тогда
Заметим, что второе слагаемое "очень быстро" растет с ростом , а первое слагаемое убывает с ростом медленней. Поэтому следует взять такое значение , при котором первое и второе слагаемые приблизительно равны, и потом немного уменьшить . Тогда второе слагаемое "сильно" уменьшится, а первое "не очень сильно" возрастет. Возьмем, например, . Тогда
то есть получили "слишком много". Возьмем на единицу меньше: . Тогда
Вспомним теперь, что должно быть целым числом, и положим . Тогда ,
При этом выборе окончательно имеем
|
Литература
- Яблонский С.В. Введение в дискретную математику. — 4-е изд. — М.: Высшая школа, 2003. — 384 с. — ISBN 5-06-004681-8