Алгоритм Кнута-Морриса-Пратта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(См. также)
Строка 4: Строка 4:
 
Дана цепочка <tex>T</tex> и образец <tex>P</tex>. Требуется найти все позиции, начиная с которых <tex>P</tex> входит в <tex>T</tex>.
 
Дана цепочка <tex>T</tex> и образец <tex>P</tex>. Требуется найти все позиции, начиная с которых <tex>P</tex> входит в <tex>T</tex>.
 
<br>
 
<br>
Построим строку <tex>S = P\#T</tex>, где <tex>\#</tex> — любой символ, не входящий в алфавит <tex>P</tex> и <tex>T</tex>. Посчитаем на ней [[Префикс-функция|префикс-функцию]] <tex>\pi()</tex>. Благодаря разделительному символу <tex>\#</tex>, выполняется <tex>\forall i: \pi(i) \le |P|</tex>. Заметим, что по определению [[Префикс-функция|префикс-функции]] при <tex>i > |P|</tex> и <tex>\pi(i) = |P|</tex> подстроки длины <tex>P</tex>, начинающиеся с позиций <tex>0</tex> и <tex>i - |P| + 1</tex>, совпадают. Соберем все такие позиции <tex>i - |P| + 1</tex> строки <tex>S</tex>, вычтем из каждой позиции <tex>|P| + 1</tex>, это и будет ответ. Другими словами, если в какой-то позиции <tex>i, \pi(i)=|P|</tex>, то в этой позиции начинается очередное вхождение образца в цепочку.
+
Построим строку <tex>S = P\#T</tex>, где <tex>\#</tex> — любой символ, не входящий в алфавит <tex>P</tex> и <tex>T</tex>. Посчитаем на ней [[Префикс-функция|префикс-функцию]] <tex>\pi()</tex>. Благодаря разделительному символу <tex>\#</tex>, выполняется <tex>\forall i: \pi(i) \leqslant |P|</tex>. Заметим, что по определению [[Префикс-функция|префикс-функции]] при <tex>i > |P|</tex> и <tex>\pi(i) = |P|</tex> подстроки длины <tex>P</tex>, начинающиеся с позиций <tex>0</tex> и <tex>i - |P| + 1</tex>, совпадают. Соберем все такие позиции <tex>i - |P| + 1</tex> строки <tex>S</tex>, вычтем из каждой позиции <tex>|P| + 1</tex>, это и будет ответ. Другими словами, если в какой-то позиции <tex>i</tex> выполняется условие <tex>\pi(i)=|P|</tex>, то в этой позиции начинается очередное вхождение образца в цепочку.
 
<br>
 
<br>
 
[[Файл:kmp_pict2.png|640px]]
 
[[Файл:kmp_pict2.png|640px]]
  
 
==Псевдокод==
 
==Псевдокод==
Пусть <tex>p = |P|</tex>, <tex>t = |T|</tex>.
+
'''int'''[] kmp('''string''' T, '''string''' P)
count = 0
+
    '''int''' p = P.length
'''for''' (i = 0 .. (t - 1))
+
    '''int''' t = T.length
    '''if''' (<tex>\pi</tex>(p + i + 1) == p)
+
    '''int'''[] answer
      answer[count++] = i + 1 - p
+
    count = 0
 +
    '''for''' i = 0 .. (t - 1)
 +
      '''if''' <tex>\pi</tex>(p + i + 1) == p
 +
          answer[count++] = i + 1 - p
 +
    '''return''' answer
  
 
==Время работы==
 
==Время работы==
Строка 19: Строка 23:
  
 
==Оценка по памяти==
 
==Оценка по памяти==
Предложенная реализация имеет оценку по памяти <tex>O(P+T)</tex>. Оценки <tex>O(T)</tex> можно добиться за счет незапоминания значений <tex>\pi()</tex> для позиций в <tex>S</tex>, меньших <tex>p + 1</tex> (т.е. до начала цепочки <tex>T</tex>).
+
Предложенная реализация имеет оценку по памяти <tex>O(P+T)</tex>. Оценки <tex>O(T)</tex> можно добиться за счет отказа от запоминания значений префикс-функции для позиций в <tex>S</tex>, меньших <tex>p + 1</tex> (т.е. до начала цепочки <tex>T</tex>), это возможно из-за того, что мы точно знаем, что значение префикс функции не может превысить длину образца, благодаря разделительному символу <tex>\#</tex>.
  
 
==См. также==
 
==См. также==

Версия 21:47, 30 мая 2014

Алгоритм Кнута — Морриса — Пратта (англ. Knuth–Morris–Pratt algorithm) — алгоритм поиска подстроки в строке.

Описание алгоритма

Дана цепочка [math]T[/math] и образец [math]P[/math]. Требуется найти все позиции, начиная с которых [math]P[/math] входит в [math]T[/math].
Построим строку [math]S = P\#T[/math], где [math]\#[/math] — любой символ, не входящий в алфавит [math]P[/math] и [math]T[/math]. Посчитаем на ней префикс-функцию [math]\pi()[/math]. Благодаря разделительному символу [math]\#[/math], выполняется [math]\forall i: \pi(i) \leqslant |P|[/math]. Заметим, что по определению префикс-функции при [math]i \gt |P|[/math] и [math]\pi(i) = |P|[/math] подстроки длины [math]P[/math], начинающиеся с позиций [math]0[/math] и [math]i - |P| + 1[/math], совпадают. Соберем все такие позиции [math]i - |P| + 1[/math] строки [math]S[/math], вычтем из каждой позиции [math]|P| + 1[/math], это и будет ответ. Другими словами, если в какой-то позиции [math]i[/math] выполняется условие [math]\pi(i)=|P|[/math], то в этой позиции начинается очередное вхождение образца в цепочку.
Kmp pict2.png

Псевдокод

int[] kmp(string T, string P)
   int p = P.length
   int t = T.length
   int[] answer
   count = 0
   for i = 0 .. (t - 1)
      if [math]\pi[/math](p + i + 1) == p
         answer[count++] = i + 1 - p
   return answer

Время работы

Префикс-функция от строки [math]S[/math] строится за [math]O(S) = O(P + T)[/math]. Проход цикла по строке [math]S[/math] содержит [math]O(T)[/math] итераций. Итого, время работы алгоритма оценивается как [math]O(P + T)[/math]. Если мы хотим произвести множественный поиск образцов в тексте, то необходимо построить префикс-функцию для каждого из образцов в отдельности, тогда, учитывая, что длина образца обычно много меньше, чем длина текста, то общее время работы оценивается как [math]O(mT)[/math], где [math]m[/math]— количество образцов.

Оценка по памяти

Предложенная реализация имеет оценку по памяти [math]O(P+T)[/math]. Оценки [math]O(T)[/math] можно добиться за счет отказа от запоминания значений префикс-функции для позиций в [math]S[/math], меньших [math]p + 1[/math] (т.е. до начала цепочки [math]T[/math]), это возможно из-за того, что мы точно знаем, что значение префикс функции не может превысить длину образца, благодаря разделительному символу [math]\#[/math].

См. также

Источники