Алгоритм Кнута-Морриса-Пратта — различия между версиями
Neuner (обсуждение | вклад) (→См. также) |
|||
Строка 4: | Строка 4: | ||
Дана цепочка <tex>T</tex> и образец <tex>P</tex>. Требуется найти все позиции, начиная с которых <tex>P</tex> входит в <tex>T</tex>. | Дана цепочка <tex>T</tex> и образец <tex>P</tex>. Требуется найти все позиции, начиная с которых <tex>P</tex> входит в <tex>T</tex>. | ||
<br> | <br> | ||
− | Построим строку <tex>S = P\#T</tex>, где <tex>\#</tex> — любой символ, не входящий в алфавит <tex>P</tex> и <tex>T</tex>. Посчитаем на ней [[Префикс-функция|префикс-функцию]] <tex>\pi()</tex>. Благодаря разделительному символу <tex>\#</tex>, выполняется <tex>\forall i: \pi(i) \ | + | Построим строку <tex>S = P\#T</tex>, где <tex>\#</tex> — любой символ, не входящий в алфавит <tex>P</tex> и <tex>T</tex>. Посчитаем на ней [[Префикс-функция|префикс-функцию]] <tex>\pi()</tex>. Благодаря разделительному символу <tex>\#</tex>, выполняется <tex>\forall i: \pi(i) \leqslant |P|</tex>. Заметим, что по определению [[Префикс-функция|префикс-функции]] при <tex>i > |P|</tex> и <tex>\pi(i) = |P|</tex> подстроки длины <tex>P</tex>, начинающиеся с позиций <tex>0</tex> и <tex>i - |P| + 1</tex>, совпадают. Соберем все такие позиции <tex>i - |P| + 1</tex> строки <tex>S</tex>, вычтем из каждой позиции <tex>|P| + 1</tex>, это и будет ответ. Другими словами, если в какой-то позиции <tex>i</tex> выполняется условие <tex>\pi(i)=|P|</tex>, то в этой позиции начинается очередное вхождение образца в цепочку. |
<br> | <br> | ||
[[Файл:kmp_pict2.png|640px]] | [[Файл:kmp_pict2.png|640px]] | ||
==Псевдокод== | ==Псевдокод== | ||
− | + | '''int'''[] kmp('''string''' T, '''string''' P) | |
− | + | '''int''' p = P.length | |
− | + | '''int''' t = T.length | |
− | + | '''int'''[] answer | |
− | + | count = 0 | |
+ | '''for''' i = 0 .. (t - 1) | ||
+ | '''if''' <tex>\pi</tex>(p + i + 1) == p | ||
+ | answer[count++] = i + 1 - p | ||
+ | '''return''' answer | ||
==Время работы== | ==Время работы== | ||
Строка 19: | Строка 23: | ||
==Оценка по памяти== | ==Оценка по памяти== | ||
− | Предложенная реализация имеет оценку по памяти <tex>O(P+T)</tex>. Оценки <tex>O(T)</tex> можно добиться за счет | + | Предложенная реализация имеет оценку по памяти <tex>O(P+T)</tex>. Оценки <tex>O(T)</tex> можно добиться за счет отказа от запоминания значений префикс-функции для позиций в <tex>S</tex>, меньших <tex>p + 1</tex> (т.е. до начала цепочки <tex>T</tex>), это возможно из-за того, что мы точно знаем, что значение префикс функции не может превысить длину образца, благодаря разделительному символу <tex>\#</tex>. |
==См. также== | ==См. также== |
Версия 21:47, 30 мая 2014
Алгоритм Кнута — Морриса — Пратта (англ. Knuth–Morris–Pratt algorithm) — алгоритм поиска подстроки в строке.
Содержание
Описание алгоритма
Дана цепочка
Построим строку , где — любой символ, не входящий в алфавит и . Посчитаем на ней префикс-функцию . Благодаря разделительному символу , выполняется . Заметим, что по определению префикс-функции при и подстроки длины , начинающиеся с позиций и , совпадают. Соберем все такие позиции строки , вычтем из каждой позиции , это и будет ответ. Другими словами, если в какой-то позиции выполняется условие , то в этой позиции начинается очередное вхождение образца в цепочку.
Псевдокод
int[] kmp(string T, string P)
int p = P.length
int t = T.length
int[] answer
count = 0
for i = 0 .. (t - 1)
if
(p + i + 1) == p
answer[count++] = i + 1 - p
return answer
Время работы
Префикс-функция от строки
строится за . Проход цикла по строке содержит итераций. Итого, время работы алгоритма оценивается как . Если мы хотим произвести множественный поиск образцов в тексте, то необходимо построить префикс-функцию для каждого из образцов в отдельности, тогда, учитывая, что длина образца обычно много меньше, чем длина текста, то общее время работы оценивается как , где — количество образцов.Оценка по памяти
Предложенная реализация имеет оценку по памяти
. Оценки можно добиться за счет отказа от запоминания значений префикс-функции для позиций в , меньших (т.е. до начала цепочки ), это возможно из-за того, что мы точно знаем, что значение префикс функции не может превысить длину образца, благодаря разделительному символу .См. также
Источники
- Википедия — Алгоритм Кнута — Морриса — Пратта
- Wikipedia — Knuth–Morris–Pratt algorithm
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн — Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.1036. — ISBN 978-5-8459-0857-5.