Динамика по поддеревьям — различия между версиями
ZeRoGerc (обсуждение | вклад) (→Динамика по поддеревьям) |
Shersh (обсуждение | вклад) м (→Псевдокод) |
||
Строка 33: | Строка 33: | ||
'''for''' (child : Ch[x]) | '''for''' (child : Ch[x]) | ||
dfs(child) | dfs(child) | ||
− | a[x] = | + | a[x] = max(a[x], b[child] + w[x][child] - с[child]) <font color = darkgreen>//по формуле выше, но без b[x](прибавим его один раз в конце) </font color = darkgreen> |
b[x] += с[child] | b[x] += с[child] | ||
a[x] += b[x] <font color = darkgreen>// так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x</font color = darkgreen> | a[x] += b[x] <font color = darkgreen>// так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x</font color = darkgreen> | ||
− | c[x] = | + | c[x] = max(a[x], b[x]) |
<font color = darkgreen>//в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root] </font color = darkgreen> | <font color = darkgreen>//в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root] </font color = darkgreen> | ||
Версия 14:32, 8 декабря 2014
Содержание
Динамика по поддеревьям
Главной особенностью динамического программирования по поддеревьям является необходимость учитывать ответы в поддеревьях, так как они могут влиять на ответы в других поддеревьях. Рассмотрим для лучшего понимания динамики по поддеревьям задачу о максимальном взвешенном паросочетании в дереве.
Задача о паросочетании максимального веса в дереве
Пусть задано взвешенное дерево, с весами, обозначенными как паросочетание, чтобы суммарный вес всех рёбер, входящих в него, был максимальным.
, где и — вершины дерева, соединённые ребром. Задача: составить такоеДля решения данной задачи существует несколько алгоритмов. Например, алгоритм Куна, который имеет верхнюю оценку порядка . Но так как нам дано дерево, то можно использовать динамическое программирование, время работы алгоритма с которым улучшается до .
Обозначим
как паросочетание максимального веса в поддереве с корнем в -той вершине, при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, входящей в поддерево -ой вершины; аналогично — как паросочетание максимального веса в поддерева с корнем в -той вершине, но только при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, не входящей в поддерево -ой вершины; а , таким образом, ответ на задачу будет находиться в , где — корень дерева. Идея динамического программирования здесь состоит в том, что для того, чтобы найти паросочетание максимального веса с корнем в вершине , нам необходимо найти максимальное паросочетание для всех поддеревьев -ой вершины.Обозначим
— как множество сыновей вершины и будем находить значения и следующим образом:Если вершина
— лист, то ,в противном же случае
- ,
С учётом того, что
, эти формулы можно переписать как- .
Теперь оценим количество операций, необходимых нам для нахождения . Так как , то для вычисления необходимо вычислить , . Для вычисления и того, и другого необходимо время порядка , где n — количество вершин в дереве.
Псевдокод
int dfs(int x): for (child : Ch[x]) dfs(child) a[x] = max(a[x], b[child] + w[x][child] - с[child]) //по формуле выше, но без b[x](прибавим его один раз в конце) b[x] += с[child] a[x] += b[x] // так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x c[x] = max(a[x], b[x]) //в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root]
Амортизированные оценки для ДП на дереве
Теорема: |
Пусть какой-либо алгоритм на дереве работает за время для вершины x, тогда время обработки им всего дерева не превышает : |
Доказательство: |
, поэтому . |
Источники информации
- В. В. Лепин, Линейный алгоритм для нахождения максимального индуцированного паросочетания наименьшего веса в реберно-взвешенном дереве
- Алгоритм Куна для поиска максимального паросочетания
- Википедия — Паросочетание