Троичный сумматор — различия между версиями
м (переименовал Троичная функциональная схема в Троичный сумматор) |
|||
Строка 167: | Строка 167: | ||
== Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления == | == Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления == | ||
− | Полный троичный одноразрядный сумматор является неполной | + | Полный троичный одноразрядный сумматор является неполной тернарной троичной логической функцией, так как в разряде переноса только два значения <tex>0</tex> и <tex>1</tex>. В отличие от предыдущих троичных тернарных функций с одноразрядным результатом, результат имеет длину <tex>1</tex> и <tex>2/3</tex> троичных разряда. |
Результат не изменяется при перемене мест операндов. | Результат не изменяется при перемене мест операндов. | ||
{| style="background-color:#CCC;margin:0.5px" | {| style="background-color:#CCC;margin:0.5px" | ||
Строка 271: | Строка 271: | ||
|} | |} | ||
В разряде переноса не бывает третьего значения троичного разряда <tex>(2)</tex>, так как в «худшем» случае <tex>2_{10}+2_{10}+1_{10}=5_{10}=12_3</tex>, то есть в старшем разряде <tex>«1»</tex>. Единица переноса возникает в <tex>9</tex>-ти случаях из <tex>18</tex>. | В разряде переноса не бывает третьего значения троичного разряда <tex>(2)</tex>, так как в «худшем» случае <tex>2_{10}+2_{10}+1_{10}=5_{10}=12_3</tex>, то есть в старшем разряде <tex>«1»</tex>. Единица переноса возникает в <tex>9</tex>-ти случаях из <tex>18</tex>. | ||
− | Как в двоичной логике двоичный | + | Как в двоичной логике двоичный тернарный полный сумматор заменяется двумя бинарными полусумматорами, так и в троичной логике троичный тернарный полный сумматор можно заменить на два троичных бинарных полусумматора, только с той разницей, что два двоичных бинарных полусумматора одинаковые, а два троичных бинарных полусумматора разные. |
1. Один полусумматор полный бинарный («сложение двух полных троичных разрядов»). Второй полусумматор — не полный бинарный («сложение одного полного троичного разряда с неполным троичным разрядом (с <tex>2/3</tex> от полного троичного разряда)»), так как в разряде переноса не бывает значений больших чем <tex>«1»</tex>. | 1. Один полусумматор полный бинарный («сложение двух полных троичных разрядов»). Второй полусумматор — не полный бинарный («сложение одного полного троичного разряда с неполным троичным разрядом (с <tex>2/3</tex> от полного троичного разряда)»), так как в разряде переноса не бывает значений больших чем <tex>«1»</tex>. |
Версия 23:00, 29 декабря 2014
В троичной логике "лжи" и "истине" соответствует и . Третьему состоянию соответствует .
Мы будем рассматривать простую троичную функциональную схему — троичный сумматор. Поэтому, вместо обозначений , мы используем (несимметричная троичная система счисления).
Содержание
Составные части полусумматора
Полусумматор состоит из двух частей: сложения по модулю
и переноса в следующий разряд.Логическое сложение по модулю при одном неполном слагаемом
Для сложения одного троичного разряда с разрядом переноса.
Результат не меняется при перемене мест операндов.
Разряд переноса при сложении с неполным слагаемым
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене мест операндов.
Троичный полусумматор с одним неполным слагаемым
Первая ступень полного троичного сумматора.
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене мест операндов.
transfer содержит разряд переноса, sum содержит сумму по модулю
.Результат операции занимает
и троичных разряда.Троичный полусумматор в несимметричной троичной системе счисления
Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.
Результат не изменяется при перемене мест операндов.
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю
в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает
и троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.transfer — перенос в следующий разряд, несимметричный.
sum — сумма по модулю
, несимметричная.Полное троичное логическое сложение с переносом в несимметричной троичной системе счисления
Полный троичный одноразрядный сумматор является неполной тернарной троичной логической функцией, так как в разряде переноса только два значения
и . В отличие от предыдущих троичных тернарных функций с одноразрядным результатом, результат имеет длину и троичных разряда. Результат не изменяется при перемене мест операндов.В разряде переноса не бывает третьего значения троичного разряда
, так как в «худшем» случае , то есть в старшем разряде . Единица переноса возникает в -ти случаях из . Как в двоичной логике двоичный тернарный полный сумматор заменяется двумя бинарными полусумматорами, так и в троичной логике троичный тернарный полный сумматор можно заменить на два троичных бинарных полусумматора, только с той разницей, что два двоичных бинарных полусумматора одинаковые, а два троичных бинарных полусумматора разные.1. Один полусумматор полный бинарный («сложение двух полных троичных разрядов»). Второй полусумматор — не полный бинарный («сложение одного полного троичного разряда с неполным троичным разрядом (с
от полного троичного разряда)»), так как в разряде переноса не бывает значений больших чем .2. Один неполный бинарный «сложение
троичного разряда с троичного разряда». Второй бинарный несимметричный «сложение троичного разряда с и троичного разряда». Результат — двухразрядный длиной и троичных разряда.