Двусторонний детерминированный конечный автомат — различия между версиями
Kabanov (обсуждение | вклад) |
Kabanov (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Двусторонний детерминированный конечный автомат (2ДКА)''' (англ. ''Two-way deterministic finite automaton (2DFA)'') {{---}} набор из восьми элементов <tex>M = \langle \Sigma , Q, L, R, s, t, r, \delta \rangle</tex>, где <tex>\Sigma</tex> {{---}} алфавит | + | '''Двусторонний детерминированный конечный автомат (2ДКА)''' (англ. ''Two-way deterministic finite automaton (2DFA)'') {{---}} набор из восьми элементов <tex>M = \langle \Sigma , Q, L, R, s, t, r, \delta \rangle</tex>, где |
+ | * <tex>\Sigma</tex> {{---}} алфавит, | ||
+ | * <tex>Q</tex> {{---}} множество состояний, | ||
+ | * <tex>L \notin \Sigma</tex> {{---}} левый маркер конца строки (англ. ''left endmarker''), | ||
+ | * <tex>R \notin \Sigma</tex> {{---}} правый маркер конца строки (англ. ''right endmarker''), | ||
+ | * <tex>s \in Q</tex> — начальное (стартовое) состояние, | ||
+ | * <tex>t \in Q</tex> {{---}} допускающее состояние, | ||
+ | * <tex>r \in Q</tex> — отвергающее состояние, | ||
+ | * <tex>\delta : Q \times \{\Sigma \cup \{L, R\}\} \to Q \times \{left, right\}</tex> {{---}} функция переходов. | ||
}} | }} | ||
Также должны быть удовлетворены следующие условия: | Также должны быть удовлетворены следующие условия: | ||
Строка 15: | Строка 23: | ||
== Регулярность языка == | == Регулярность языка == | ||
+ | {{Теорема | ||
+ | |statement=Классы языков ДКА и 2ДКА совпадают. | ||
+ | |proof= | ||
Рассмотрим длинную входную строку <tex>w_1</tex> и разобьем на две подстроки <tex>w_1=xz</tex>. Будем считать, что <tex>w_1 = a_1 a_2 a_3 \dots a_n</tex>. Пусть <tex>a_0 = L</tex> и <tex>a_{n+1}=R</tex>. Так как у нас наш автомат может производить чтение в любом направлении, то граница <tex>x</tex> и <tex>z</tex> может быть пересечена несколько раз. Каждый раз, когда автомат пересекает границу справа налево (то есть из <tex>z</tex> в <tex>x</tex>), он выходит из <tex>z</tex> в состояние <tex>q</tex>. Когда пересечение происходит снова слева направо (если оно вообще происходит), то автомат выходит из <tex>x</tex> в состояние <tex>p</tex>. Теперь, если 2ДКА перейдет в <tex>x</tex> в состояние <tex>q</tex> заново, то он снова может появиться в состоянии <tex>p</tex>. Более того, состояние <tex>p</tex> зависит исключительно от <tex>q</tex> и <tex>x</tex>. Обозначим такое отношение через <tex>T_x(q) = p</tex>. Мы может записать все такие отношения в виде конечной таблицы <tex>T_x : Q \cup \{d\} \to Q \cup \{h\}</tex>, где <tex>Q</tex> {{---}} множество состояний 2ДКА, а <tex>d</tex> и <tex>h</tex> будут описаны ниже. | Рассмотрим длинную входную строку <tex>w_1</tex> и разобьем на две подстроки <tex>w_1=xz</tex>. Будем считать, что <tex>w_1 = a_1 a_2 a_3 \dots a_n</tex>. Пусть <tex>a_0 = L</tex> и <tex>a_{n+1}=R</tex>. Так как у нас наш автомат может производить чтение в любом направлении, то граница <tex>x</tex> и <tex>z</tex> может быть пересечена несколько раз. Каждый раз, когда автомат пересекает границу справа налево (то есть из <tex>z</tex> в <tex>x</tex>), он выходит из <tex>z</tex> в состояние <tex>q</tex>. Когда пересечение происходит снова слева направо (если оно вообще происходит), то автомат выходит из <tex>x</tex> в состояние <tex>p</tex>. Теперь, если 2ДКА перейдет в <tex>x</tex> в состояние <tex>q</tex> заново, то он снова может появиться в состоянии <tex>p</tex>. Более того, состояние <tex>p</tex> зависит исключительно от <tex>q</tex> и <tex>x</tex>. Обозначим такое отношение через <tex>T_x(q) = p</tex>. Мы может записать все такие отношения в виде конечной таблицы <tex>T_x : Q \cup \{d\} \to Q \cup \{h\}</tex>, где <tex>Q</tex> {{---}} множество состояний 2ДКА, а <tex>d</tex> и <tex>h</tex> будут описаны ниже. | ||
Строка 37: | Строка 48: | ||
Теперь мы может использовать теорему Майхилла-Нероуда, чтобы показать, что язык <tex>L(M)</tex> нашего автомата <tex>M</tex> [[Регулярные_языки:_два_определения_и_их_эквивалентность|регулярный]]. | Теперь мы может использовать теорему Майхилла-Нероуда, чтобы показать, что язык <tex>L(M)</tex> нашего автомата <tex>M</tex> [[Регулярные_языки:_два_определения_и_их_эквивалентность|регулярный]]. | ||
− | <tex>T_x = T_y \Rightarrow \forall z (M\ \text{accepts}\ xz \Leftrightarrow M\ \text{accepts}\ yz)</tex> <tex> \Leftrightarrow \forall z (xz \in L(M)</tex> <tex> \Leftrightarrow yz \in L(M)) \Leftrightarrow x \equiv_{L(M)} y</tex>, где <tex>\equiv_{L(M)}</tex> {{---}} [[Отношение_эквивалентности|отношение эквивалентности]] на множестве слов в алфавите. Таким образом, если 2 строки имеют одинаковые таблицы, то тогда они эквивалентны отношением <tex>\equiv_{L(M)}</tex>. Поскольку у нас только конечное число таблиц, отношение <tex>\equiv_{L(M)}</tex> имеет только конечное количество [[Отношение_эквивалентности|классов эквивалентности]], самое большее один для каждой таблицы. Следовательно, по теореме <tex>L(M)</tex> {{---}} регулярный язык, ч.т.д. | + | <tex>T_x = T_y \Rightarrow \forall z (M\ \text{accepts}\ xz \Leftrightarrow M\ \text{accepts}\ yz)</tex> <tex> \Leftrightarrow \forall z (xz \in L(M)</tex> <tex> \Leftrightarrow yz \in L(M)) \Leftrightarrow x \equiv_{L(M)} y</tex>, где <tex>\equiv_{L(M)}</tex> {{---}} [[Отношение_эквивалентности|отношение эквивалентности]] на множестве слов в алфавите. Таким образом, если 2 строки имеют одинаковые таблицы, то тогда они эквивалентны отношением <tex>\equiv_{L(M)}</tex>. Поскольку у нас только конечное число таблиц, отношение <tex>\equiv_{L(M)}</tex> имеет только конечное количество [[Отношение_эквивалентности|классов эквивалентности]], самое большее один для каждой таблицы. Следовательно, по теореме Майхилла-Нероуда, <tex>L(M)</tex> {{---}} регулярный язык, что согласно теореме Клини, совпадает с классом и автоматных языков, ч.т.д. |
+ | }} | ||
== Пример == | == Пример == | ||
Строка 58: | Строка 70: | ||
== См. также == | == См. также == | ||
− | |||
* [[Детерминированные конечные автоматы]] | * [[Детерминированные конечные автоматы]] | ||
+ | * [[Локальные автоматы]] | ||
+ | * [[Теорема Клини (совпадение классов автоматных и регулярных языков)]] | ||
== Источники информации== | == Источники информации== | ||
* [[wikipedia:Two-way_deterministic_finite_automaton|Wikipedia {{---}} Two-way deterministic finite automaton]] | * [[wikipedia:Two-way_deterministic_finite_automaton|Wikipedia {{---}} Two-way deterministic finite automaton]] | ||
+ | * [[wikipedia:ru:Теорема_Майхилла_—_Нероуда|Википедия {{---}} Теорема Майхилла-Нероуда]] | ||
* [http://arxiv.org/pdf/1208.2755.pdf Giovanni Pighizzini, ''Two-Way Finite Automata: Old and Recent Results''] | * [http://arxiv.org/pdf/1208.2755.pdf Giovanni Pighizzini, ''Two-Way Finite Automata: Old and Recent Results''] | ||
* [http://www.cs.cornell.edu/Courses/cs682/2008sp/Handouts/2DFA.pdf Cornell University, ''Two-Way Finite Automata''] | * [http://www.cs.cornell.edu/Courses/cs682/2008sp/Handouts/2DFA.pdf Cornell University, ''Two-Way Finite Automata''] |
Версия 11:52, 10 января 2015
Определение: |
Двусторонний детерминированный конечный автомат (2ДКА) (англ. Two-way deterministic finite automaton (2DFA)) — набор из восьми элементов
| , где
Также должны быть удовлетворены следующие условия:
- для некоторого ,
- для некоторого ,
и
- ,
- ,
- ,
- .
Регулярность языка
Теорема: |
Классы языков ДКА и 2ДКА совпадают. |
Доказательство: |
Рассмотрим длинную входную строку и разобьем на две подстроки . Будем считать, что . Пусть и . Так как у нас наш автомат может производить чтение в любом направлении, то граница и может быть пересечена несколько раз. Каждый раз, когда автомат пересекает границу справа налево (то есть из в ), он выходит из в состояние . Когда пересечение происходит снова слева направо (если оно вообще происходит), то автомат выходит из в состояние . Теперь, если 2ДКА перейдет в в состояние заново, то он снова может появиться в состоянии . Более того, состояние зависит исключительно от и . Обозначим такое отношение через . Мы может записать все такие отношения в виде конечной таблицы , где — множество состояний 2ДКА, а и будут описаны ниже.На входной строке 2ДКА начнет чтение с левого маркера конца строки. В процессе работы автомата позиция чтения будет меняться. В конце концов это позиция пересечет слева направо границу между и . В первый раз это произойдет в каком-нибудь состоянии, которое будем называть (для этого мы и выделили ). Так же автомат может никогда не выйти из . В таком случае мы запишем . Состояние дает немного информации о , но только конечное количество, поскольку существует только конечное количество вариантов для . Отметим, что зависит только от и не зависит от . Если на вход подавалась строка вместо , то в таком случае при пересечении границы из в автомат также был бы в состоянии , потому что его значение до того момента определялось только и до тех пор все, что находится справа от границы никак не влияет.Если , то 2ДКА в бесконечном цикле внутри , и он никогда не допустит и не отвергнет входную строку.Предположим, что 2ДКА переходит из в и спустя время перейти обратно в состояние . Если это происходит, то потом:
Ещё раз отметим, что зависит только от и и не зависит от . Если автомат переходит в справа в состояние , то тогда он появится заново в состоянии (или никогда не перейдет, если ), потому что автомат детерминированный, и его поведение полностью определяется и состоянием, в которое он вошел.Если мы запишем для каждого состояния вместе с , это даст нам всю информацию о , которую можно перенести через границу между и . Все это позволит узнать сразу после пересечения границы, а также посмотреть значения . Если — другая строка, такая что , то тогда и будут неразличимы.Заметим, что у нас конечное число возможных таблиц , а именно , где — размер множество . Таким образом, у нас конечное количество информации о , которое мы может перенести через границу справа от , и которое закодировано у нас в таблицe .Отметим также, что если и автомат допускает строку , то тогда он допускает и строку , потому что последовательность состояний перенесенных через границу и (либо и ) в любом направлении полностью определяется таблицами и строкой . Чтобы допустить строку , автомат должен в какой-то момент прочитать правый маркер конца строки, находясь в допускающем состоянии .Теперь мы может использовать теорему Майхилла-Нероуда, чтобы показать, что язык регулярный. нашего автомата , где — отношение эквивалентности на множестве слов в алфавите. Таким образом, если 2 строки имеют одинаковые таблицы, то тогда они эквивалентны отношением . Поскольку у нас только конечное число таблиц, отношение имеет только конечное количество классов эквивалентности, самое большее один для каждой таблицы. Следовательно, по теореме Майхилла-Нероуда, — регулярный язык, что согласно теореме Клини, совпадает с классом и автоматных языков, ч.т.д. |
Пример
Рассмотрим следующий язык
при .Он может быть легко распознан с помощью следующего недетерменированного конечного автомата.
Теперь построим на его основе ДКА. Мы можем построить автомат , который запоминает последние входных символов. Следовательно, когда мы находимся в состоянии, соответствующему подстроке , и читаем очередной символ , то мы переходим в состояние, которому уже будет соответствовать подстрока . Однако, в случае автомат переходит в допускающее состояние, где в цикле может переходить на любому символу. Следует отметить, что такая стратегия строит ДКА c состояниями. Ниже представлен автомат , который распознает язык .
Покажем, что построенные таким образом автоматы будут минимальными.
- Каждые две попарно различных строки и длины различимы. Чтобы доказать это, достаточно рассмотреть строку , где — самая левая позиция символа, в которой начинают различаться строки и , и проверить, что ровно одна строка или принадлежит .
- Каждая строка длины не принадлежит и, следовательно, различима со строкой , которая принадлежит .
- Таким образом, строк в являются попарно различимыми для . Как следствие, — минимальное количество состояний для ДКА, который способен распознать язык .
Чтобы определить, что строка
принадлежит языку , нужно для проверить, что . Строка будет допустимой, если условие сработает хотя бы для одного . Этот алгоритм может быть просто реализован с помощью 2ДКА. Будем для каждого двигаться на позиций вперед, а потом на позиций назад до позиции . Кроме того, при движении с позиции до автомат должен помнить сохраняется ли условие . Такой подход требует состояний.См. также
- Детерминированные конечные автоматы
- Локальные автоматы
- Теорема Клини (совпадение классов автоматных и регулярных языков)