Динамическое программирование по профилю — различия между версиями
(→Динамика по изломанному профилю) |
(→Пример) |
||
Строка 115: | Строка 115: | ||
== Пример == | == Пример == | ||
− | Еще раз используем в качестве примера задачу о замощении. Базовая линия теперь будет ломаной: при прохождении через <tex>i</tex>-ю горизонталь сверху вниз, она переходит на предыдущую вертикаль и спускается до низу. | + | Еще раз используем в качестве примера задачу о замощении. Базовая линия теперь будет ломаной: при прохождении через <tex>i</tex>-ю горизонталь сверху вниз, она переходит на предыдущую вертикаль и спускается до низу. Теперь профиль — это не только маска, но ещё и место излома. |
+ | |||
+ | [[Файл:img35.gif]] | ||
Профилем будет пара <tex>(p, i)</tex>, в <tex>p</tex> будет информация о <tex>n + 1</tex> маленьком квадратике слева от базовой линии, имеющем с ней общие точки; <tex>i</tex> обозначает номер горизонтали, на которой произошел излом. Квадратики профиля будут нумероваться сверху вниз, так что угловой будет иметь номер <tex>i + 1</tex>. Горизонтали будем нумеровать с нуля, так что <tex>i</tex> пробегает значения от <tex>0</tex> до <tex>n - 1</tex>. | Профилем будет пара <tex>(p, i)</tex>, в <tex>p</tex> будет информация о <tex>n + 1</tex> маленьком квадратике слева от базовой линии, имеющем с ней общие точки; <tex>i</tex> обозначает номер горизонтали, на которой произошел излом. Квадратики профиля будут нумероваться сверху вниз, так что угловой будет иметь номер <tex>i + 1</tex>. Горизонтали будем нумеровать с нуля, так что <tex>i</tex> пробегает значения от <tex>0</tex> до <tex>n - 1</tex>. | ||
Строка 131: | Строка 133: | ||
<font color=green>// Функция bit(x,i), возвращающая единицу или ноль или i-й бит в двоичной записи числа x</font> | <font color=green>// Функция bit(x,i), возвращающая единицу или ноль или i-й бит в двоичной записи числа x</font> | ||
'''print_all_links'''(<tex>p</tex>, <tex>i</tex>): | '''print_all_links'''(<tex>p</tex>, <tex>i</tex>): | ||
− | '''if''' <tex>\mathtt{bit}(\mathtt{p, i + 1}) = \mathtt{0}</tex> | + | '''if''' <tex>\mathtt{bit}(\mathtt{p, i + 1}) == \mathtt{0}</tex> |
− | '''if''' <tex>i = n - 1</tex> | + | '''if''' <tex>i == n - 1</tex> |
− | '''println''' <tex>((p - (2 << i)) << 1</tex>, " ", <tex>0)</tex> | + | '''println'''<tex>((p - (2 << i)) << 1</tex>, " ", <tex>0)</tex> |
'''else''' | '''else''' | ||
− | '''println''' <tex>(p - (2 << i)</tex>, " ", <tex>i + 1)</tex> | + | '''println'''<tex>(p - (2 << i)</tex>, " ", <tex>i + 1)</tex> |
'''else''' | '''else''' | ||
'''if''' <tex>\mathtt{bit}(\mathtt{p, i}) = \mathtt{0}</tex> | '''if''' <tex>\mathtt{bit}(\mathtt{p, i}) = \mathtt{0}</tex> | ||
− | '''if''' <tex>i = n - 1 </tex> | + | '''if''' <tex>i == n - 1 </tex> |
− | '''println''' <tex>((p<< 1)</tex>, " ", <tex>0)</tex> | + | '''println'''<tex>((p<< 1)</tex>, " ", <tex>0)</tex> |
'''else''' | '''else''' | ||
− | '''println''' <tex>(p + (1 << i)</tex>, " ", <tex>(i + 1) % n)</tex> | + | '''println'''<tex>(p + (1 << i)</tex>, " ", <tex>(i + 1) % n)</tex> |
− | '''if''' <tex>i < n - 1</tex> && <tex>\mathtt{bit}(\mathtt{p, i + 2}) = \mathtt{0}</tex> | + | '''if''' <tex>i < n - 1</tex> && <tex>\mathtt{bit}(\mathtt{p, i + 2}) == \mathtt{0}</tex> |
− | '''println''' <tex>(p + (4 << i)</tex>, " ", <tex>i + 1)</tex> | + | '''println'''<tex>(p + (4 << i)</tex>, " ", <tex>i + 1)</tex> |
При такой реализации существует немало профилей только с одним переходом (например, у которых <tex>(i + 1)</tex>-й бит равен единице). | При такой реализации существует немало профилей только с одним переходом (например, у которых <tex>(i + 1)</tex>-й бит равен единице). |
Версия 21:49, 14 января 2015
Определение: |
Динамическое программирование по профилю (англ. dynamic programming with profile) — способ оптимизации перебора количества вариантов с помощью динамического программирования, когда одно из измерений не большое. |
Определение: |
Профиль (англ. profile) — один из столбцов (строк), удовлетворяющий условию задачи. Обычно используется в качестве состояния динамики. |
Содержание
Общие принципы
Обычно дана таблица и надо посчитать количество замощений этой таблицы некоторыми фигурами (замощение шахматной доски доминошками). Можно перебрать все варианты и выбрать из них удовлетворяющие условию. Но можно воспользоваться методом динамического программирования по профилю и сократить время по одной размерности до линейной. Затем пусть у нас есть правило по которому надо заполнить и для него нам надо
предыдущих линий. Тогда можно перебрать все замощения длиной . В итоге нужно заполнить данную таблицу этими замощениями. Получается, что если перебирать все варианты нам понадобиться времени, а если перебирать только состояния и переходить по ним нам потребуется времени (где - количество способов замещения клетки).Задача о замощении домино
Условие
Найти количество способов замостить таблицу
с помощью доминошек размерами .Решение
Для удобства можно хранить профили в виде двоичных масок. В качестве состояния динамики будем использовать профили размерами
. В этом профиле будет означать, что домино лежит горизонтально и заканчивается на этом столбце, иначе . Таких профилей будет . Теперь проверим из какого профиля в какой можно перейти.Из профиля
в профиль можно перейти если выполняются условия:- Можно положить горизонтальные домино. То есть там где в профиле стоит , в профиле должен стоять .
- Можно доложить в оставшиеся клетки вертикальные домино. То есть оставшиеся в профиле должны образовывать четные подстроки.
Пусть
если из профиля можно перейти в -ый, иначе .Пусть так же
— количество способов замощения первых столбцов и заканчивавшийся на -ом профиле. ТогдаОтветом будет
, где — профиль, который может быть последним (т.е. все группы из имеют четные размеры)Реализация
// n, m - размер таблицы forfor if можно перейти из в профиль else // Так как мы можем начать только с профиля где все клетки 0 for for for for if можно закончить профилем return
Оценка сложности: подсчет
, и подсчет в итогеОценка памяти:
, так же можно заметить что в массиве для состояния нам нужно только состояние, при такой реализации нужно будет . Еще можно не считать массив , а просто каждый раз перепроверять можем ли мы перейти в это состояние в итоге потребуется памяти, но нам потребуется больше времени , где время проверки возможности перехода из в равно и тогда время получается .Задача о симпатичных узорах
Условие
Дана таблица
, каждая клетка которой может быть окрашена в один из двух цветов: белый или черный. Симпатичным узором называется такая раскраска, при которой не существует квадрата , в котором все клетки одного цвета. Требуется найти количество симпатичных узоров для соответствующей таблицы.Решение
Для удобства можно хранить профиля в виде двоичных масок. В качестве состояния динамики будем использовать профили размера
. В этом профиле будет означать что клетка закрашена в черный цвет, и если в белый. Из профиля в -ый можно перейти если выполнено условие:- если поставить и профиль рядом, то не должно быть квадратов одного цвета
Пусть
если из профиля можно перейти в -ый, иначе .Пусть так же
— количество способов раскрашивания первые столбцов и заканчивавшийся на -ом профиле. ТогдаОтветом будет
Реализация
// n, m - размер таблицы forfor if можно перейти из в профиль else for // Так как мы можем начать c любого профиля for for for for // Так как мы можем закончить любым профилем return
Оценка сложности: подсчет
, и подсчет в итогеОценка памяти:
, так же можно заметить что в массиве для состояния нам нужно только состояние, при такой реализации нужно будет . Еще можно не считать массив , а просто каждый раз перепроверять можем ли мы перейти в это состояние в итоге потребуется памяти, но нам потребуется больше времени , где время проверки возможности перехода из в равно и тогда время получается .Динамика по изломанному профилю
Определение: |
Изломанный профиль (англ. broken profile) — обобщение прямого профиля на случай, когда обработанным является не целое число столбцов, а некоторое количество столбцов и несколько первых клеток следующего столбца. |
Это очень сильная оптимизация динамики по профилю. Идея в том, чтобы добиться как можно меньшего числа переходов (от одного профиля к другому).
Пример
Еще раз используем в качестве примера задачу о замощении. Базовая линия теперь будет ломаной: при прохождении через
-ю горизонталь сверху вниз, она переходит на предыдущую вертикаль и спускается до низу. Теперь профиль — это не только маска, но ещё и место излома.Профилем будет пара
, в будет информация о маленьком квадратике слева от базовой линии, имеющем с ней общие точки; обозначает номер горизонтали, на которой произошел излом. Квадратики профиля будут нумероваться сверху вниз, так что угловой будет иметь номер . Горизонтали будем нумеровать с нуля, так что пробегает значения от до .Пусть
если из профиля = можно перейти в , иначе .- Eсли , то , иначе ;
- Mожно так положить доминошку, накрывающую квадратик с номером , что после этого в будет храниться в точности информация о соответствующих квадратиках.
Проще говоря, доминошку можно класть только двумя способами — как показано на рисунках (на квадратик с номером
можно положить не более одной вертикальной и горизонтальной доминошки). То, что потом получается после сдвига вниз излома, и будет новым профилем. Заметим, что если клетка занята, то доминошку уже не надо класть, и логично отождествить с . Условно пишется — " ", однако, нужно всегда иметь в виду возможность .Легко заметить, что количество профилей увеличилось в
раз (добавилось число от до и еще один бит). Но зато количество переходов резко сократилось с до .//Для профиля (p, i) выводятся все переходы из него (нумерация горизонталей начинается с нуля и i = 0..n - 1) // Функция bit(x,i), возвращающая единицу или ноль или i-й бит в двоичной записи числа x print_all_links(, ): if if println , " ", else println , " ", else if if println , " ", else println , " ", if && println , " ",
При такой реализации существует немало профилей только с одним переходом (например, у которых
-й бит равен единице).Отождествим все профили с один переходом с теми, кто их них получается. Это будет выглядеть так: пусть
(и только он) получается из , который, в свою очередь, получается из . Тогда имеются такие соотношения: , . Отождествить и — это, по сути, заменить эти два соотношение на одно, то есть теперь и , но , и так далее.Таким образом, возможно сокращение профилей не менее чем вдвое. Дальнейшие оптимизации мы оставляем читателю.
В итоге получаем асимптотику
. Она значительно лучше всего, что мы получали до сих пор, и это серьезный повод использовать изломанный профиль вместо обычного.