Сортирующие сети для квадратичных сортировок — различия между версиями
Timur (обсуждение | вклад) |
Timur (обсуждение | вклад) |
||
Строка 32: | Строка 32: | ||
Пусть <tex> S(n) = 2n - 3 </tex> — количество слоев в сети сортировки. | Пусть <tex> S(n) = 2n - 3 </tex> — количество слоев в сети сортировки. | ||
− | При переходе от сортирующей сети с <tex>n</tex> входами к сети с <tex>n + 1</tex> входами, добавляем <tex> n </tex> дополнительных компараторов (<tex>[1:2],[2:3]\dots[n:n + 1]</tex> или <tex>[n + 1:n],[n:n + 1]\dots[1:2]</tex>, т.к. возможны две стратегии добавления). В полученной "треугольной" сети можно заметить, что <tex>n - 1</tex> компаратор входят в уже существующие слои (<tex>[2:3],[3:4]\dots[n:n + 1] </tex> или <tex>[n:n + 1],[n - 1:n - 2]\dots[2:3]</tex>) | + | При переходе от сортирующей сети с <tex>n</tex> входами к сети с <tex>n + 1</tex> входами, добавляем <tex> n </tex> дополнительных компараторов (<tex>[1:2],[2:3]\dots[n:n + 1]</tex> или <tex>[n + 1:n],[n:n + 1]\dots[1:2]</tex>, т.к. возможны две стратегии добавления). В полученной "треугольной" сети можно заметить, что <tex>n - 1</tex> компаратор входят в уже существующие слои (<tex>[2:3],[3:4]\dots[n:n + 1] </tex> или <tex>[n:n + 1],[n - 1:n - 2]\dots[2:3]</tex>) т.е. можно объединить компараторы в слои так, что в каждом четном слое самым верхним компаратором будет <tex> [2:3] </tex>, а на нечетном <tex>[1:2]</tex>,т.к. количество этих компараторов <tex> n - 1</tex> и <tex> n - 2 </tex> , но тогда один компаратор из предыдущей сортирующий сети и один из добавленных не вносят вклад в количество слоев. Тогда видно, что количество слоев увеличилось на <tex> 2 = S(n + 1) - S(n) </tex>, т.е. переход выполняется и формула верна. Что и требовалось доказать. |
}} | }} |
Версия 19:04, 24 мая 2015
Рассмотрим модели сортирующих сетей для квадратичных сортировок.
Содержание
Сортирующие сети с последовательной сортировкой
На один слой будем устанавливать только один компаратор. Все последующие сети получаются простым моделированием соответствующих сортировок.
Сортировка пузырьком | Сортировка вставками | Сортировка выбором |
Сортирующие сети с параллельной сортировкой
На один слой устанавливается несколько компараторов.
Сортировка пузырьком и вставками
Заметим, что если сжать последовательные сортирующие сети пузырьком и вставками, то результат будет одним и тем же. Это видно из симметрии расположения компараторов на картинках выше.
Утверждение: |
В результирующей сети будет слоев, где — количество входов. |
Докажем данное утверждение по принципу математической индукции. База индукции: При . В сети всего два входа, на которых располагается один компаратор, тем самым наше предположение выполняется.Шаг индукции: Пусть При переходе от сортирующей сети с — количество слоев в сети сортировки. входами к сети с входами, добавляем дополнительных компараторов ( или , т.к. возможны две стратегии добавления). В полученной "треугольной" сети можно заметить, что компаратор входят в уже существующие слои ( или ) т.е. можно объединить компараторы в слои так, что в каждом четном слое самым верхним компаратором будет , а на нечетном ,т.к. количество этих компараторов и , но тогда один компаратор из предыдущей сортирующий сети и один из добавленных не вносят вклад в количество слоев. Тогда видно, что количество слоев увеличилось на , т.е. переход выполняется и формула верна. Что и требовалось доказать. |
Сортирующая сеть для
:Сортировка выбором
Сеть для сортировки выбором выглядит иначе. При переходе к сети с
входами, добавляется компараторов: .Утверждение: |
В результирующей сети будет слоев, где — количество входов. |
Определим операцию вложения компаратора в компаратор : разместим компаратор и на одном слое, так, что .Теперь воспользуемся принципом математической индукции. База индукции: . В сети всего два входа, на которых располагается один компаратор, тем самым наше предположение выполняется. Шаг индукции: Пусть — количество слоев в сети сортировки с входами.При переходе от сортирующей сети с Тогда наш переход выполняется и формула верна. Что и требовалось доказать. входами к сети с входами, добавляем компараторов . Заметим, что в добавленных компаратора можно вложить компараторов из предыдущей сети, так, вкладывая один компаратор в другой, образуется новый слой, т.е. количество слоев не изменяется. Тогда останется два компаратора: в которые ничего нельзя вложить, т.е. количество слоев изменяется на . |
Пример правильной и ошибочной сети для
. Если перенести свободные компараторы и слить их в один слой, то можно уменьшить количество слоев, но при этом сеть перестает быть сортирующей (при ошибка будет возникать на последовательности ).См.также
Источники информации
- Дональд Э. Кнут. Искусство программирования. Том 3. Сортировка и Поиск. стр. 238— ISBN 0-201-89685-0
- Кормен, Томас Х.,Рональд Л., Штайн, Клифорд. Глава 27. Сортирующие сети // Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-e издание. — М.: «Вильямс», 2005. — С. 799 - 822. — ISBN 5-8459-0857-4.
- Википедия — Сети сортировки