Таблица инверсий — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
 
'''Инверсией''' в [[Действие перестановки на набор из элементов, представление в виде циклов|перестановке]] <math>\pi</math> порядка ''n'' называется всякая пара индексов <tex>i, j</tex> такая, что <tex>1\leqslant i<j\leqslant n</tex> и <tex>\pi(i)>\pi(j)</tex>.
 
'''Инверсией''' в [[Действие перестановки на набор из элементов, представление в виде циклов|перестановке]] <math>\pi</math> порядка ''n'' называется всякая пара индексов <tex>i, j</tex> такая, что <tex>1\leqslant i<j\leqslant n</tex> и <tex>\pi(i)>\pi(j)</tex>.
 
}}
 
}}
<tex> T = (x_1,x_2,\dots,x_n)</tex>
+
Пусть <tex> P = (p_1,p_2,\dots,p_n)</tex> является перестановкой чисел <tex> 1, 2,\dots, n</tex>.
 +
{{Определение
 +
|definition =
 +
'''Таблицей инверсий''' перестановки <tex> P </tex> называют такую последовательность <tex> T = (t_1,t_2,\dots,t_n)</tex>, в которой <tex>t_i</tex> равно числу элементов перестановки <tex> P </tex>, стоящих в <tex> P </tex> левее числа <tex>i</tex> и больших <tex>i</tex>.
 +
}}

Версия 21:23, 18 ноября 2010

Определение:
Инверсией в перестановке [math]\pi[/math] порядка n называется всякая пара индексов [math]i, j[/math] такая, что [math]1\leqslant i\lt j\leqslant n[/math] и [math]\pi(i)\gt \pi(j)[/math].

Пусть [math] P = (p_1,p_2,\dots,p_n)[/math] является перестановкой чисел [math] 1, 2,\dots, n[/math].

Определение:
Таблицей инверсий перестановки [math] P [/math] называют такую последовательность [math] T = (t_1,t_2,\dots,t_n)[/math], в которой [math]t_i[/math] равно числу элементов перестановки [math] P [/math], стоящих в [math] P [/math] левее числа [math]i[/math] и больших [math]i[/math].