Opij1sumwu — различия между версиями
м (→Описание алгоритма) |
м (→Время работы) |
||
Строка 41: | Строка 41: | ||
==Время работы== | ==Время работы== | ||
− | Для определения времени работы алгоритма надо заметить, что <tex>i,k=0,\ldots n</tex>, <tex>k_j=0,\ldots m</tex> где <tex>j=1,\ldots m</tex>. Из рекуррентной формулы очевидно, что для подсчета одного значения <tex>f_i(k,k_1, \ldots ,k_m)</tex> нужно <tex>O(m)</tex> времени. Значит алгоритм работает за <tex>O(n^2m^{m+1}) | + | Для определения времени работы алгоритма надо заметить, что <tex>i,k=0,\ldots n</tex>, <tex>k_j=0,\ldots m</tex> где <tex>j=1,\ldots m</tex>. Из рекуррентной формулы очевидно, что для подсчета одного значения <tex>f_i(k,k_1, \ldots ,k_m)</tex> нужно <tex>O(m)</tex> времени. Значит алгоритм работает за <tex>O(n^2m^{m+1})</tex>. |
==См. также== | ==См. также== |
Версия 14:50, 22 мая 2016
Задача: |
Дано | одинаковых станков, которые работают параллельно, и работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется за единицу времени. Для каждой работы есть время окончания — время, до которого она должна быть выполнена. Требуется минимизировать , то есть суммарный вес всех просроченных работ.
Описание алгоритма
Для решения этой задачи, мы должны найти множество динамического программирования с использованием утверждений из решения задачи .
работ, которые успеваем выполнить до дедлайна. Значит нам надо минимизировать: . Будем решать эту задачу с помощьюРассмотрим работы в порядке неубывания дедлайнов:
. Пусть мы нашли решение для работ . Очевидно, что .Пусть . Тогда, для добавления работы в множество должно выполняться неравенство: , где и — количество периодов времени со свойствами: и . Чтобы проверить это неравенство, нам нужно посчитать чисел , . Для этого определим переменные:
— вектор соответствующий множеству из задачи
.
Тогда можно заметить, что
. Следовательно можно упростить исходное неравенство: или .Для динамического программирования определим
, где и где .Пусть
, тогда определим рекуррентное выражение для :
и начальное условие:
для .Если выполняется неравенство
, то мы не можем добавить работу в множество и поэтому .Если выполняется неравенство
, тогда мы может добавить работу в множество или не добавлять. Если мы добавим работу , то . Если мы не добавим работу , то по аналогии с первым случаем . Так как , то нам надо взять минимум из значений и .Ответ на задачу будет находиться в
.Время работы
Для определения времени работы алгоритма надо заметить, что
, где . Из рекуррентной формулы очевидно, что для подсчета одного значения нужно времени. Значит алгоритм работает за .См. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — c. 168 - 170. ISBN 978-3-540-69515-8