1ripippmtnsumwu — различия между версиями
Swanwarp (обсуждение | вклад) (→Решение) |
Swanwarp (обсуждение | вклад) (→Динамика) |
||
Строка 46: | Строка 46: | ||
|proof= | |proof= | ||
− | Если <tex>r_k \notin [t_u, t_v)</tex>, то работа <tex>J_k</tex> не может быть поставлена ни в какой <tex>Z</tex> такой, что расписание от <tex>Z</tex> разрешимо и <tex>Z \subset U_k(t_u, t_v)</tex>. Тогда, очевидно, что <tex>W_k(t_u, t_v, m) = W_{k-1}(t_u, t_v, m) | + | Если <tex>r_k \notin [t_u, t_v)</tex>, то работа <tex>J_k</tex> не может быть поставлена ни в какой <tex>Z</tex> такой, что расписание от <tex>Z</tex> разрешимо и <tex>Z \subset U_k(t_u, t_v)</tex>. Тогда, очевидно, что <tex>W_k(t_u, t_v, m) = W_{k-1}(t_u, t_v, m).</tex> |
Версия 23:53, 5 июня 2016
Задача: |
Дано | работ и 1 станок. Для каждой работы известны её время появления и вес , а также дедлайн . Время выполнения всех работ равно . Каждую работу можно прервать и продолжить ее выполнение в любой момент времени. Требуется выполнить все работы, чтобы значение (суммарный вес просроченных работ) было минимальным.
Содержание
Решение
Необходимо найти выполнимое множество работ динамического программирования. Предполагается, что работы отсортированы в порядке неубывания дедлайна.
такое, что его суммарный вес максимален. Эта проблема решается с помощьюАлгоритм построения расписания
Пусть у нас есть множества работ
, для которых надо составить расписание. Возможны два случая:- Если машина освободилась, то вставляем в расписание работу с наименьшим .
- Если машина занята работой и в момент времени появилась работа , тогда если , то прервем и поставим на выполнение . В противном случае просто продолжим выполнение .
Можно заметить что, если работа была вставлена в расписание после своего дедлайна, то данное множество работ
не является выполнимым. Таким образом, решение задачи сводится к нахождению такого множества работ , которое будет выполнимым, если построить его по данному алгоритму, и чей вес будет максимален.Лемма: |
Пусть . Тогда время начала и время окончания этой работы в расписании будет принадлежать . |
Доказательство: |
Сначала докажем лемму для . Пусть минимальная временная точка такая, что между и станок не простаивает. По структуре расписания . Работы, которые выполняются между и , не могут выполняться ни до , ни после , даже частично. Это следует из структуры алгоритма построения расписания если работа была прервана работой , то после выполнения мы снова вставляем в расписание . Таким образом, делится на . Возможны следующие два случая:
В любом из этих двух случаев есть такое , такое что станок не простаивает между и . Тогда делится на . Следовательно, не превышает , так как станок не простаивает. Поэтому .
|
Динамика
Определение: |
|
Лемма: |
|
Доказательство: |
Если , то работа не может быть поставлена ни в какой такой, что расписание от разрешимо и . Тогда, очевидно, что
|
Псевдокод
Отсортировать работы поforeach if for to for to foreach if else Подсчитать по формуле из леммы return
Оценка алгоритма
Заметим, что множество
содержит не более элементов. Следовательно, цикл по итерируется раз. Внутри этого цикла мы тратим времени на подсчет , так как зная и мы можем посчитать и . Также алгоритм использует шестимерный массив для хранения . Таким образом, учитывая итерации алгоритма по и , нам потребуется времени и памяти для работы алгоритма.См. также
Источники информации
Philippe Baptiste - Polynomial Time Algorithms for Minimizing the Weighted Number of Late Jobs on a Single Machine with Equal Processing Times