Лемма Огдена — различия между версиями
Zernov (обсуждение | вклад) |
Zernov (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
# либо <tex>u</tex> и <tex>v</tex>, либо <tex>y</tex> и <tex>z</tex> обе содержат выделенные позиции; | # либо <tex>u</tex> и <tex>v</tex>, либо <tex>y</tex> и <tex>z</tex> обе содержат выделенные позиции; | ||
# <tex>vxy</tex> содержат не более <tex>n</tex> выделенных позиций; | # <tex>vxy</tex> содержат не более <tex>n</tex> выделенных позиций; | ||
− | # существует <tex>A \in N</tex>, такой что <tex>S \Rightarrow^{+} uAz \Rightarrow^{+} uvAyz \Rightarrow^{+} uvxyz</tex>. | + | # существует <tex>A \in N</tex>, такой что <tex>S \Rightarrow^{+} uAz \Rightarrow^{+} uvAyz \Rightarrow^{+} uvxyz</tex>. (т.е. <tex>\forall k \geqslant 0~uv^{k}xy^{k}z\in L</tex>) |
|proof= | |proof= | ||
Введем следующие обозначения: <tex>m = |N|</tex> и <tex>l</tex> — длина самой длинной правой части правила из <tex>P</tex>. Тогда в качестве <tex>n</tex> возьмем <tex>l^{2m + 3}</tex>. Рассмотрим дерево разбора <tex>T</tex> для произвольного слова <tex>\omega \in L(\Gamma)</tex>, у которого <tex>|\omega| \ge n</tex>. В силу выбора <tex>n</tex> в <tex>T</tex> будет по крайне мере один путь от корня до листа длины не менее <tex>2m + 3</tex>. Произвольным образом выделим в <tex>\omega</tex> не менее <tex>n</tex> позиций. Соответствующие этим позициям листья дерева <tex>T</tex> будем называть выделенными. | Введем следующие обозначения: <tex>m = |N|</tex> и <tex>l</tex> — длина самой длинной правой части правила из <tex>P</tex>. Тогда в качестве <tex>n</tex> возьмем <tex>l^{2m + 3}</tex>. Рассмотрим дерево разбора <tex>T</tex> для произвольного слова <tex>\omega \in L(\Gamma)</tex>, у которого <tex>|\omega| \ge n</tex>. В силу выбора <tex>n</tex> в <tex>T</tex> будет по крайне мере один путь от корня до листа длины не менее <tex>2m + 3</tex>. Произвольным образом выделим в <tex>\omega</tex> не менее <tex>n</tex> позиций. Соответствующие этим позициям листья дерева <tex>T</tex> будем называть выделенными. | ||
Строка 20: | Строка 20: | ||
Условие (1) выполнено, поскольку <tex>x</tex> содержит выделенную вершину, а именно <tex>v_p</tex>. Очевидно, что условие (4) выполнено в силу предложенного разбиения <tex>\omega</tex>. Кроме того, <tex>u</tex> содержит выделенную вершину, а именно потомка некоторого сына вершины <tex>u_1</tex>. Аналогично, выделенный потомок некоторого сына вершины <tex>a</tex> содержится в <tex>v</tex>. Таким образом, условие (2) выполнено. Поскольку между <tex>v_p</tex> и <tex>a</tex> не более <tex>2m + 3</tex> вершин, вершина <tex>a</tex> имеет не более <tex>n</tex> выделенных потомков, поэтому условие (3) выполнено. | Условие (1) выполнено, поскольку <tex>x</tex> содержит выделенную вершину, а именно <tex>v_p</tex>. Очевидно, что условие (4) выполнено в силу предложенного разбиения <tex>\omega</tex>. Кроме того, <tex>u</tex> содержит выделенную вершину, а именно потомка некоторого сына вершины <tex>u_1</tex>. Аналогично, выделенный потомок некоторого сына вершины <tex>a</tex> содержится в <tex>v</tex>. Таким образом, условие (2) выполнено. Поскольку между <tex>v_p</tex> и <tex>a</tex> не более <tex>2m + 3</tex> вершин, вершина <tex>a</tex> имеет не более <tex>n</tex> выделенных потомков, поэтому условие (3) выполнено. | ||
}} | }} | ||
+ | |||
+ | == Пример не КС-языка, для которого выполняется лемма == | ||
+ | Докажем, что можно построить такой язык, для которого будет выполняться лемма Огдена, однако он не будет контекстно-свободным. Выберем <tex>P</tex> {{---}} подмножество <tex>N</tex> и | ||
+ | |||
+ | <tex>A_{p} = \{ (ab)^n \mid P \in N \} </tex> | ||
+ | |||
+ | <tex>B_{p} = A_{p} \cup X^* \{aa, bb\}X^*</tex> | ||
+ | |||
+ | Языки над <tex>X=\{a, b\}</tex>. | ||
+ | |||
+ | Очевидно, что <tex>B_{p}</tex> КС, если <tex>A_{p}</tex> контекстно-свободен. <tex>B_{p}</tex> является рекурсивно-перечислимым, если и <tex>A_{p}</tex> им является. | ||
+ | |||
+ | Для <tex>B_{p}</tex> будет выполняться лемма Огдена для <tex>n = 4</tex>. Выбрав <tex>A_{p}</tex> таким образом, чтобы он был рекурсивно-перечислимым, мы создадим такой язык. (Такие языки существуют) | ||
== См. также == | == См. также == | ||
Строка 27: | Строка 40: | ||
*Hopcroft, Motwani and Ullman {{---}} Automata Theory, Languages, and Computation {{---}} Addison-Wesley, 1979. ISBN 81-7808-347-7. | *Hopcroft, Motwani and Ullman {{---}} Automata Theory, Languages, and Computation {{---}} Addison-Wesley, 1979. ISBN 81-7808-347-7. | ||
+ | *Ogden, W. (1968). "A helpful result for proving inherent ambiguity". Mathematical Systems Theory. 2 (3): 191–194. | ||
+ | *[http://archive.numdam.org/ARCHIVE/ITA/ITA_1978__12_3/ITA_1978__12_3_201_0/ITA_1978__12_3_201_0.pdf On languages satisfying Ogden's lemma] | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Контекстно-свободные грамматики]] | [[Категория: Контекстно-свободные грамматики]] |
Версия 23:43, 3 января 2017
Лемма: |
Для каждой контекстно-свободной грамматики существует такое , что для любого слова длины не менее и для любых выделенных в не менее позиций, может быть представлено в виде , причем:
|
Доказательство: |
Введем следующие обозначения: и — длина самой длинной правой части правила из . Тогда в качестве возьмем . Рассмотрим дерево разбора для произвольного слова , у которого . В силу выбора в будет по крайне мере один путь от корня до листа длины не менее . Произвольным образом выделим в не менее позиций. Соответствующие этим позициям листья дерева будем называть выделенными.Пусть — корень , а — сын , который имеет среди своих потомков наибольшее число выделенных листьев (если таких несколько, то самый правый из них). Рассмотрим — путь от корня до листа.Будем называть ветвящейся ту вершину, у которой по крайне мере два сына имеют выделенных потомков. Докажем по индукции, что если среди Поскольку имеет хотя бы выделенных потомков, то содержит по крайне мере ветвящиеся вершин. Заметим, что — лист, поэтому . Будем называть левой ветвящейся вершиной, если ее сын, не принадлежащий пути , имеет выделенного потомка, лежащего слева от . В противном случае назовем правой ветвящейся вершиной. Рассмотрим последние вершины, принадлежащие пути . Предположим, что хотя бы вершины — левые ветвящиеся (случай, когда хотя бы вершины — правые ветвящиеся, разбирается аналогично). Пусть — последние левые ветвящиеся вершины. Поскольку , то среди них можно найти как минимум две вершины, соответствующие одному нетерминалу. Обозначим эти вершины и , причем — потомок . Тогда на рисунке показано, как представить в требуемом виде.
|
Пример не КС-языка, для которого выполняется лемма
Докажем, что можно построить такой язык, для которого будет выполняться лемма Огдена, однако он не будет контекстно-свободным. Выберем
— подмножество и
Языки над
.Очевидно, что
КС, если контекстно-свободен. является рекурсивно-перечислимым, если и им является.Для
будет выполняться лемма Огдена для . Выбрав таким образом, чтобы он был рекурсивно-перечислимым, мы создадим такой язык. (Такие языки существуют)См. также
Лемма о разрастании для КС-грамматик
Источники
- Hopcroft, Motwani and Ullman — Automata Theory, Languages, and Computation — Addison-Wesley, 1979. ISBN 81-7808-347-7.
- Ogden, W. (1968). "A helpful result for proving inherent ambiguity". Mathematical Systems Theory. 2 (3): 191–194.
- On languages satisfying Ogden's lemma