Динамика по поддеревьям — различия между версиями
Sketcher (обсуждение | вклад) |
Sketcher (обсуждение | вклад) |
||
Строка 26: | Строка 26: | ||
− | Теперь оценим количество операций, необходимых нам для нахождения <tex>c[root]</tex>. Так как <tex>c[i]=\max \left ( a[i],b[i] \right )</tex>, то для вычисления <tex>c[root]</tex> необходимо вычислить <tex>a[root]</tex>, <tex>b[root]</tex>. Для вычисления и того, и другого необходимо время порядка <tex>O \left ( \sum_{x=1}^n \limits \left | Ch(x) \right | \right )=O \left ( n \right )</tex>, где <tex> n </tex> — | + | Теперь оценим количество операций, необходимых нам для нахождения <tex>c[root]</tex>. Так как <tex>c[i]=\max \left ( a[i],b[i] \right )</tex>, то для вычисления <tex>c[root]</tex> необходимо вычислить <tex>a[root]</tex>, <tex>b[root]</tex>. Для вычисления и того, и другого необходимо время порядка <tex>O \left ( \sum_{x=1}^n \limits \left | Ch(x) \right | \right )=O \left ( n \right )</tex>, где <tex> n </tex> — число вершин в дереве. |
=== Псевдокод === | === Псевдокод === | ||
− | '''function''' dfs(x: '''int'''): <font color = darkgreen>//в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root] </font color = darkgreen> | + | '''function''' dfs(x: '''int''', a: '''int''', b: '''int''', c: '''int'''): <font color = darkgreen>//в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root] </font color = darkgreen> |
'''for''' (i : Ch[x]) | '''for''' (i : Ch[x]) | ||
dfs(i) | dfs(i) | ||
Строка 50: | Строка 50: | ||
# Пути проходящие через вершину <tex> v </tex>. Рассмотрим двух сыновей этой вершины: <tex> x </tex> и <tex> y </tex>. Нам надо подсчитать все пути, которые поднимаются из поддерева <tex> x </tex> в <tex> v </tex> и затем опускаются в поддерево <tex> y </tex> и наоборот. То есть по каждому пути, оканчивающимся в вершине <tex> x </tex> мы пройдем столько раз сколько элементов в поддереве <tex> y </tex>, следовательно таких путей будет <tex> G[x]S[y] </tex>. Аналогично, если будем подниматься из поддерева <tex> y </tex>. Также надо учитывать сколько раз мы проходим по ребрам, соединяющим вершины <tex> x </tex> <tex> v </tex> и <tex> y </tex> <tex> x </tex>. Итого для двух вершин <tex> x </tex> и <tex> y </tex>: <tex> G[x]S[y] + G[y]S[x] + 2S[x]S[y] </tex>, следовательно ( <tex> x,y \in Ch(v)</tex>) <tex> H[v] = \sum_{x,y\ x \ne y} \limits{\Bigl(G[x]S[y] + G[y]S[x] + 2S[x]S[y]\Bigl)} </tex>. Но такой подсчет испортит асимптотику до <tex> O(n^2) </tex>. Заметим, что <tex> \sum_{x,y} \limits {\Bigl(G[x]S[y]\Bigl)} = \sum_{x} \limits {G[x]} \sum_{y} \limits {S[y]} </tex>. Но еще надо учесть, что <tex> x \ne y </tex>, следовательно <tex> \sum_{x,y\ x \ne y} \limits{\Bigl(G[x]S[y]\Bigl)} = \sum_{x} \limits {G[x]} \sum_{y} \limits {S[y]} - \sum_{x} \limits {\Bigl(G[x]S[x]\Bigl)} </tex>. Аналогично для <tex> S[x]S[y] </tex>. Итак: <tex> H[v] = 2\biggl(\sum_{x} \limits {G[x]} \sum_{y} \limits {S[y]} - \sum_{x} \limits {\Bigl(G[x]S[x]\Bigl)} \biggl) + 2\biggl(\sum_{x} \limits {S[x]} \sum_{y} \limits {S[y]} - \sum_{x} \limits {\Bigl(S[x]S[x]\Bigl)} \biggl) </tex>. | # Пути проходящие через вершину <tex> v </tex>. Рассмотрим двух сыновей этой вершины: <tex> x </tex> и <tex> y </tex>. Нам надо подсчитать все пути, которые поднимаются из поддерева <tex> x </tex> в <tex> v </tex> и затем опускаются в поддерево <tex> y </tex> и наоборот. То есть по каждому пути, оканчивающимся в вершине <tex> x </tex> мы пройдем столько раз сколько элементов в поддереве <tex> y </tex>, следовательно таких путей будет <tex> G[x]S[y] </tex>. Аналогично, если будем подниматься из поддерева <tex> y </tex>. Также надо учитывать сколько раз мы проходим по ребрам, соединяющим вершины <tex> x </tex> <tex> v </tex> и <tex> y </tex> <tex> x </tex>. Итого для двух вершин <tex> x </tex> и <tex> y </tex>: <tex> G[x]S[y] + G[y]S[x] + 2S[x]S[y] </tex>, следовательно ( <tex> x,y \in Ch(v)</tex>) <tex> H[v] = \sum_{x,y\ x \ne y} \limits{\Bigl(G[x]S[y] + G[y]S[x] + 2S[x]S[y]\Bigl)} </tex>. Но такой подсчет испортит асимптотику до <tex> O(n^2) </tex>. Заметим, что <tex> \sum_{x,y} \limits {\Bigl(G[x]S[y]\Bigl)} = \sum_{x} \limits {G[x]} \sum_{y} \limits {S[y]} </tex>. Но еще надо учесть, что <tex> x \ne y </tex>, следовательно <tex> \sum_{x,y\ x \ne y} \limits{\Bigl(G[x]S[y]\Bigl)} = \sum_{x} \limits {G[x]} \sum_{y} \limits {S[y]} - \sum_{x} \limits {\Bigl(G[x]S[x]\Bigl)} </tex>. Аналогично для <tex> S[x]S[y] </tex>. Итак: <tex> H[v] = 2\biggl(\sum_{x} \limits {G[x]} \sum_{y} \limits {S[y]} - \sum_{x} \limits {\Bigl(G[x]S[x]\Bigl)} \biggl) + 2\biggl(\sum_{x} \limits {S[x]} \sum_{y} \limits {S[y]} - \sum_{x} \limits {\Bigl(S[x]S[x]\Bigl)} \biggl) </tex>. | ||
− | Ответ задачи: <tex> F[v] = \sum_{x \in Ch(v)} \limits F[x] + G[v] + H[v] </tex>. Асимптотика каждого слагаемого равна <tex>O \left ( \sum_{x=1}^n \limits \left | Ch(x) \right | \right )=O \left ( n \right )</tex>, где <tex> n </tex> — | + | Ответ задачи: <tex> F[v] = \sum_{x \in Ch(v)} \limits F[x] + G[v] + H[v] </tex>. Асимптотика каждого слагаемого равна <tex>O \left ( \sum_{x=1}^n \limits \left | Ch(x) \right | \right )=O \left ( n \right )</tex>, где <tex> n </tex> — число вершин в дереве, следовательно и время работы самого алгоритма <tex> O \left (n \right ) </tex>. |
== Амортизированные оценки для ДП на дереве == | == Амортизированные оценки для ДП на дереве == |
Версия 10:40, 7 января 2017
Главной особенностью динамического программирования по поддеревьям является необходимость учитывать ответы в поддеревьях, так как они могут влиять на ответы в других поддеревьях. Рассмотрим для лучшего понимания динамики по поддеревьям задачу о максимальном взвешенном паросочетании в дереве.
Содержание
Задача о паросочетании максимального веса в дереве
Пусть задано взвешенное дерево, с весами, обозначенными как
, где и — вершины дерева, соединённые ребром.Задача: |
Cоставить такое паросочетание, чтобы суммарный вес всех рёбер, входящих в него, был максимальным. |
Для решения данной задачи существует несколько алгоритмов. Например, алгоритм Куна, который имеет верхнюю оценку порядка . Но так как нам дано дерево, то можно использовать динамическое программирование, время работы алгоритма с которым улучшается до .
Обозначим
как паросочетание максимального веса в поддереве с корнем в -той вершине, при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, входящей в поддерево -ой вершины; аналогично — как паросочетание максимального веса в поддерева с корнем в -той вершине, но только при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, не входящей в поддерево -ой вершины; а , таким образом, ответ на задачу будет находиться в , где — корень дерева. Идея динамического программирования здесь состоит в том, что для того, чтобы найти паросочетание максимального веса с корнем в вершине , нам необходимо найти максимальное паросочетание для всех поддеревьев -ой вершины.Обозначим
— как множество сыновей вершины и будем находить значения и следующим образом:Если вершина
— лист, то ,в противном же случае
- ,
С учётом того, что
, эти формулы можно переписать как- .
Теперь оценим количество операций, необходимых нам для нахождения . Так как , то для вычисления необходимо вычислить , . Для вычисления и того, и другого необходимо время порядка , где — число вершин в дереве.
Псевдокод
function dfs(x: int, a: int, b: int, c: int): //в основной процедуре вызываем dfs от корня(root), после этого ответ будет хранится в c[root] for (i : Ch[x]) dfs(i) a[x] = max(a[x], b[i] + w[x][i] - с[i]) // по формуле выше, но без b[x] (прибавим его один раз в конце) b[x] += с[i] a[x] += b[x] // так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x c[x] = max(a[x], b[x])
Задача о сумме длин всех путей в дереве
Задача: |
Найти сумму длин всех путей в дереве. |
Решим эту задачу за
. Пусть задано подвешенное дерево. Рассмотрим количество путей для вершины . Во-первых, это пути не проходящие через эту вершину, то есть все пути между её сыновьями. Во-вторых, пути, которые оканчиваются вершиной . И в третьих, это пути проходящие через вершину , они начинаются из поддерева одного из сыновей этой вершины и заканчиваются в другом поддереве одного из сыновей вершины .Теперь подсчитаем пути для каждого варианта. Обозначим
размер поддерева , сумма длин всех путей вершины , количество путей оканчивающихся вершиной , количество путей проходящих через вершину . Если вершина лист, то = 1, а = 0.- Пути не проходящие через эту вершину. Это просто сумма суммы длин для всех поддеревьев детей или .
- Пути оканчивающиеся в вершине . Рассмотрим ребро, соединяющее вершину и одного ее сына, пусть это будет вершина . Переберем все пути, которые начинаются с этого ребра и идут вниз. Это будет сумма путей оканчивающихся в , так как суммарная длина поддерева уже сосчитана и каждый такой путь мы продлили ребром, соединяющим вершины и . Всего таких путей: .
- Пути проходящие через вершину . Рассмотрим двух сыновей этой вершины: и . Нам надо подсчитать все пути, которые поднимаются из поддерева в и затем опускаются в поддерево и наоборот. То есть по каждому пути, оканчивающимся в вершине мы пройдем столько раз сколько элементов в поддереве , следовательно таких путей будет . Аналогично, если будем подниматься из поддерева . Также надо учитывать сколько раз мы проходим по ребрам, соединяющим вершины и . Итого для двух вершин и : , следовательно ( ) . Но такой подсчет испортит асимптотику до . Заметим, что . Но еще надо учесть, что , следовательно . Аналогично для . Итак: .
Ответ задачи:
. Асимптотика каждого слагаемого равна , где — число вершин в дереве, следовательно и время работы самого алгоритма .Амортизированные оценки для ДП на дереве
Теорема: |
Пусть какой-либо алгоритм на дереве работает за время для вершины x, тогда время обработки им всего дерева не превышает : |
Доказательство: |
, поэтому . |