Теорема Кэли — различия между версиями
Alexandra (обсуждение | вклад) |
Alexandra (обсуждение | вклад) |
||
Строка 28: | Строка 28: | ||
Так как <tex>G</tex> {{---}} группа, то <tex>g_i \circ g_j =g_k\in G</tex> и <tex>f_{g_i \circ g_j}=f_{g_k}</tex>, откуда <tex>f_{g_i} \circ f_{g_j}\in K</tex>. Значит, <tex>K</tex> {{---}} подгруппа группы <tex>S_n</tex>. | Так как <tex>G</tex> {{---}} группа, то <tex>g_i \circ g_j =g_k\in G</tex> и <tex>f_{g_i \circ g_j}=f_{g_k}</tex>, откуда <tex>f_{g_i} \circ f_{g_j}\in K</tex>. Значит, <tex>K</tex> {{---}} подгруппа группы <tex>S_n</tex>. | ||
− | Осталось доказать, что <tex>G</tex> и <tex>K</tex> | + | Осталось доказать, что <tex>G</tex> и <tex>K</tex> изоморфны. Для этого рассмотрим отображение <tex>\varphi : G \rightarrow K\</tex>, которое переводит элемент <tex>g\in G</tex> в элемент <tex>\varphi(g)=f_{g^\prime}\in K</tex>, где <tex>{g^\prime}</tex> симметричен элементу <tex>g</tex> в группе <tex>G</tex>. |
Заметим, что | Заметим, что | ||
#Отображение <tex>\varphi </tex> взаимно однозначно. | #Отображение <tex>\varphi </tex> взаимно однозначно. | ||
#Для любых <tex>g_i,g_j\in G</tex> верно | #Для любых <tex>g_i,g_j\in G</tex> верно | ||
− | <tex>\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = </tex>, то есть <tex> | + | <tex>\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = f_{{g}^\prime_i \circ {g}^\prime_j}=f_{{g}^\prime_i}\circ f_{{g}^\prime_j}=\varphi (g_i)\circ \varphi (g_j)</tex>, то есть отображение <tex>\varphi</tex> сохраняет операцию. |
− | Значит | + | Значит, оно является изоморфизмом групп <tex>G</tex> и <tex>K</tex>. |
− | |||
− | |||
− | |||
− | |||
− | |||
}} | }} | ||
==Примеры== | ==Примеры== |
Версия 06:47, 8 января 2017
Теорема (Кэли(Cayley), о вложении любой конечной группы в группу перестановок): |
Любая конечная группа порядка изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы ). |
Доказательство: |
Пусть — бинарная операция в конечной группе . Для каждого элемента построим соответствующую перестановку где .— перестановка, так как
Пусть — композиция двух перестановок. Если — перестановка, то — обратная перестановка, где — обратный элемент , так как . Если — нейтральный элемент в группе, то — тождественная перестановка.Докажем,что множество всех перестановок — подгруппа симметрической группы .Пусть .Рассмотрим перестановку . Так как — группа, то для любого верно, Так как — группа, то и , откуда . Значит, — подгруппа группы .Осталось доказать, что и изоморфны. Для этого рассмотрим отображение , которое переводит элемент в элемент , где симметричен элементу в группе .Заметим, что
Значит, оно является изоморфизмом групп , то есть отображение сохраняет операцию. и . |
Примеры
Примером и иллюстрацией для данной теоремы является группа
— группа остатков по модулю 3, с операцией сложения.Пусть
См. также
- Умножение перестановок, обратная перестановка, группа перестановок
- Действие перестановки на набор из элементов, представление в виде циклов
- Таблица инверсий
- Матричное представление перестановок