Теорема Кэли — различия между версиями
Alexandra (обсуждение | вклад) |
Alexandra (обсуждение | вклад) |
||
Строка 32: | Строка 32: | ||
Заметим, что | Заметим, что | ||
#Отображение <tex>\varphi </tex> взаимно однозначно. | #Отображение <tex>\varphi </tex> взаимно однозначно. | ||
− | #Для любых <tex>g_i,g_j\in G</tex> верно | + | #Для любых <tex>g_i,g_j\in G</tex> верно <tex>\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = f_{{g}^\prime_i \circ {g}^\prime_j}=f_{{g}^\prime_i}\circ f_{{g}^\prime_j}=\varphi (g_i)\circ \varphi (g_j)</tex>, то есть отображение <tex>\varphi</tex> сохраняет операцию. |
− | <tex>\varphi (g_i \circ g_j) = f_{(g_i \circ g_j)^\prime} = f_{{g}^\prime_i \circ {g}^\prime_j}=f_{{g}^\prime_i}\circ f_{{g}^\prime_j}=\varphi (g_i)\circ \varphi (g_j)</tex>, то есть отображение <tex>\varphi</tex> сохраняет операцию. | ||
Значит, оно является изоморфизмом групп <tex>G</tex> и <tex>K</tex>. | Значит, оно является изоморфизмом групп <tex>G</tex> и <tex>K</tex>. |
Версия 06:49, 8 января 2017
Теорема (Кэли(Cayley), о вложении любой конечной группы в группу перестановок): |
Любая конечная группа порядка изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы ). |
Доказательство: |
Пусть — бинарная операция в конечной группе . Для каждого элемента построим соответствующую перестановку где .— перестановка, так как
Пусть — композиция двух перестановок. Если — перестановка, то — обратная перестановка, где — обратный элемент , так как . Если — нейтральный элемент в группе, то — тождественная перестановка.Докажем,что множество всех перестановок — подгруппа симметрической группы .Пусть .Рассмотрим перестановку . Так как — группа, то для любого верно, Так как — группа, то и , откуда . Значит, — подгруппа группы .Осталось доказать, что и изоморфны. Для этого рассмотрим отображение , которое переводит элемент в элемент , где симметричен элементу в группе .Заметим, что
|
Примеры
Примером и иллюстрацией для данной теоремы является группа
— группа остатков по модулю 3, с операцией сложения.Пусть
См. также
- Умножение перестановок, обратная перестановка, группа перестановок
- Действие перестановки на набор из элементов, представление в виде циклов
- Таблица инверсий
- Матричное представление перестановок