Теорема Кэли — различия между версиями
Alexandra (обсуждение | вклад) м (→Примеры) |
Alexandra (обсуждение | вклад) м (→Источники информации) |
||
Строка 67: | Строка 67: | ||
==Источники информации== | ==Источники информации== | ||
− | * [http://en.wikipedia.org/wiki/Cayley's_theorem Cayley's theorem | + | * [http://en.wikipedia.org/wiki/Cayley's_theorem Wikipedia {{---}} Cayley's theorem] |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика]] | [[Категория: Комбинаторика]] |
Версия 00:48, 9 января 2017
Теорема (Кэли(Cayley), о вложении любой конечной группы в группу перестановок): |
Любая конечная группа порядка изоморфна некоторой подгруппе группы перестановок (подгруппе симметрической группы ). |
Доказательство: |
Пусть — бинарная операция в конечной группе . Для каждого элемента построим соответствующую перестановку где .— перестановка, так как
Пусть — композиция двух перестановок. Если — перестановка, то — обратная перестановка, где — обратный элемент , так как . Если — нейтральный элемент в группе, то — тождественная перестановка.Докажем,что множество всех перестановок — подгруппа симметрической группы .Пусть .Рассмотрим перестановку . Так как — группа, то для любого верно, Так как — группа, то и , откуда . Значит, — подгруппа группы .Осталось доказать, что и изоморфны. Для этого рассмотрим отображение , которое переводит элемент в элемент , где симметричен элементу в группе .Заметим, что
|
Содержание
Примеры
Рассмотрим конечную группу
с операцией — сложения по модулю . Найдём подгруппу , изоморфную , то есть найдём отображение в . Пустьи
где .
То есть
.
Тогда находим три перестановки, составляющие группу
:
Таким образом, мы нашли подгруппу группы перестановок, изоморфную конечной группе
.Применение
Теорема Кэли позволяет найти для любой конечной группы с определённой бинарной операцией изоморфную её подгруппу группы перестановок.
См. также
- Умножение перестановок, обратная перестановка, группа перестановок
- Действие перестановки на набор из элементов, представление в виде циклов
- Таблица инверсий
- Матричное представление перестановок