Задача о счастливых билетах — различия между версиями
Rgolchin (обсуждение | вклад) |
Rgolchin (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
G(z) = 1+z+\ldots+z^9 = \dfrac{1-z^{10}}{1-z} | G(z) = 1+z+\ldots+z^9 = \dfrac{1-z^{10}}{1-z} | ||
</tex> и получим, что <tex>G^{2n}(z)=(1-z^{10})^{2n}(1-z)^{-2n}=\sum_{k=0}^{2n}\binom{2n}{k}(-z^{10})^k\sum_{j=0}^{\infty}\binom{-2n}{j}(-z)^k</tex>. Так как <tex>\binom{-2n}{k}=(-1)^k\binom{2n+k-1}{k}</tex>, <tex>[z^{9n}]G^{2n}(z)=\sum_{j=0}^{\lfloor{9n/10}\rfloor}(-1)^j\binom{2n}{j}\binom{11n-10j-1}{9n-10j}</tex>, что при <tex>n=3</tex> дает <tex>\binom{6}{0}\binom{32}{27}-\binom{6}{1}\binom{22}{17}+\binom{6}{2}\binom{12}{7}=55252</tex>. | </tex> и получим, что <tex>G^{2n}(z)=(1-z^{10})^{2n}(1-z)^{-2n}=\sum_{k=0}^{2n}\binom{2n}{k}(-z^{10})^k\sum_{j=0}^{\infty}\binom{-2n}{j}(-z)^k</tex>. Так как <tex>\binom{-2n}{k}=(-1)^k\binom{2n+k-1}{k}</tex>, <tex>[z^{9n}]G^{2n}(z)=\sum_{j=0}^{\lfloor{9n/10}\rfloor}(-1)^j\binom{2n}{j}\binom{11n-10j-1}{9n-10j}</tex>, что при <tex>n=3</tex> дает <tex>\binom{6}{0}\binom{32}{27}-\binom{6}{1}\binom{22}{17}+\binom{6}{2}\binom{12}{7}=55252</tex>. | ||
+ | == Решение с помощью формулы включения-исключения <ref>[http://neerc.ifmo.ru/wiki/index.php?title=%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%B2%D0%BA%D0%BB%D1%8E%D1%87%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8%D1%81%D0%BA%D0%BB%D1%8E%D1%87%D0%B5%D0%BD%D0%B8%D1%8F Формула включения-исключения — Викиконспекты]</ref>== | ||
+ | Как было замечено выше, ответ на задачу равен количеству шестизначных билетов с суммой <tex>27</tex>. Рассмотрим расстановки целых неотрицательных чисел на шести позициях, дающих в сумме 27; обозначим их множество <tex>A</tex>. Выделим шесть множеств <tex>C_i, i = 1 \ldots 6</tex>, где <tex>i</tex>-е множество состоит из расстановок, у которых в i-й позиции стоит число, не меньшее 10. Число счастливых билетов равно числу расстановок, не принадлежащих ни одному из множеств. Посмотрим на расстановку n чисел с суммой k как на сочетание с повторениями из n по k, число означает количество повторений элемента, значит количество расстановок равно <tex>\binom{n+k-1}{n-1}</tex>. Число <tex>\left\vert{A}\right\vert</tex> всех расстановок неотрицательных целых чисел с суммой 27 в шесть позиций равно <tex>\binom{32}{5}</tex> Число расстановок <tex>\left\vert{C_i}\right\vert</tex> одинаково для всех i и равно <tex>\binom{22}{5}</tex>. В самом деле, мы можем поставить в i-ю позицию число 10, а оставшуюся сумму 17 произвольно распределить по шести позициям. Аналогично, число расстановок <tex>\left\vert{C_i \cap C_j}\right\vert</tex> одинаково для любой пары <tex>i, j, i \neq j</tex> и равно <tex>\binom{12}{5}</tex>: мы выбираем две позиции и ставим в них 10 и произвольно распределяем оставшуюся сумму 7 по шести позициям. Таким образом, искомое количество расстановок равно <tex>\left\vert{A}\right\vert - \binom{6}{1}\left\vert{C_i}\right\vert+\binom{6}{2}\left\vert{C_i \cap C_j}\right\vert = \binom{32}{5}-6\binom{22}{5}+15\binom{12}{5} = 55252</tex> | ||
+ | == Решение путем интегрирования == | ||
+ | |||
== См. также == | == См. также == | ||
* [[Производящая функция]] | * [[Производящая функция]] | ||
* [[Динамическое программирование]] | * [[Динамическое программирование]] | ||
+ | |||
+ | *[https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8 Интегральная формула Коши — Википедия] | ||
+ | == Примечания == | ||
+ | <references /> | ||
== Источники информации == | == Источники информации == | ||
* [http://www.genfunc.ru/theory/lucky/ Задача о счастливых билетах :: Производящие функции] | * [http://www.genfunc.ru/theory/lucky/ Задача о счастливых билетах :: Производящие функции] |
Версия 02:02, 9 июня 2017
Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например,
. Известно, что количество счастливых билетов из шести цифр равно .Задача: |
Для натурального | найти количество -значных счастливых билетов .
Содержание
Решение с помощью динамического программирования
Обозначим количество
-значных чисел с суммой как (число может содержать ведущие нули). -значный счастливый билет состоит из двух частей: левой ( цифр) и правой (тоже цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем -значное число с суммой в левой части (это можно сделать способами), для него будет существовать возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой в одной из частей равно . Значит общее число билетов равно . Верхний индекс суммирования равен , так как максимальная сумма цифр в одной части билета равна . Также можно сопоставить счастливому билету -значное число с суммой : , причем это соответствие взаимно-однозначно, поэтому . Осталось научиться вычислять . Положим . При количество -значных чисел с суммой цифр можно выразить через количество -значных чисел, добавляя к ним -ю цифру, которая может быть равна : .Решение с помощью производящей функции
Выпишем производящую функцию
, коэффициент при у которой будет равен : Действительно, однозначное число с суммой цифр (для ) можно представить одним способом. Для — ноль способов. Заметим, что — производящая функция для чисел , поскольку коэффициент при получается перебором всех возможных комбинаций из цифр, равных в сумме . Ответом на задачу будет . Перепишем производящую функцию в ином виде: и получим, что . Так как , , что при дает .Решение с помощью формулы включения-исключения [1]
Как было замечено выше, ответ на задачу равен количеству шестизначных билетов с суммой
. Рассмотрим расстановки целых неотрицательных чисел на шести позициях, дающих в сумме 27; обозначим их множество . Выделим шесть множеств , где -е множество состоит из расстановок, у которых в i-й позиции стоит число, не меньшее 10. Число счастливых билетов равно числу расстановок, не принадлежащих ни одному из множеств. Посмотрим на расстановку n чисел с суммой k как на сочетание с повторениями из n по k, число означает количество повторений элемента, значит количество расстановок равно . Число всех расстановок неотрицательных целых чисел с суммой 27 в шесть позиций равно Число расстановок одинаково для всех i и равно . В самом деле, мы можем поставить в i-ю позицию число 10, а оставшуюся сумму 17 произвольно распределить по шести позициям. Аналогично, число расстановок одинаково для любой пары и равно : мы выбираем две позиции и ставим в них 10 и произвольно распределяем оставшуюся сумму 7 по шести позициям. Таким образом, искомое количество расстановок равно