Задача о минимуме/максимуме скалярного произведения — различия между версиями
Shersh (обсуждение | вклад) м (→Примечание) |
Haposiwe (обсуждение | вклад) (Добавлено "см. также") |
||
Строка 18: | Строка 18: | ||
== Примечания == | == Примечания == | ||
<references/> | <references/> | ||
+ | |||
+ | ==См. также== | ||
+ | * [[Умножение перестановок, обратная перестановка, группа перестановок]] | ||
+ | * [[Действие перестановки на набор из элементов, представление в виде циклов]] | ||
+ | * [[Таблица инверсий]] | ||
+ | * [[Матричное представление перестановок]] | ||
== Источники информации == | == Источники информации == |
Версия 20:04, 23 декабря 2017
Задача: |
Необходимо найти минимальную/максимальную суммы попарных произведений для двух заданных упорядоченных наборов чисел. |
Содержание
Решение
Скалярным произведением двух упорядоченных последовательностей чисел будем называть число
Теорема (о минимуме/максимуме скалярного произведениях[1]): |
Минимум скалярного произведения достигается при сопоставлении возрастающей последовательности и убывающей последовательности . При сопоставлении возрастающей достигается максимум. |
Доказательство: |
Будем считать, что последовательность | отсортирована по возрастанию. Покажем, что если существуют пары чисел и , такие что и , то скалярное произведение можно уменьшить, поменяв местами и . Так как в нашем случае , то , а следовательно данное скалярное произведение не является минимальным. Проделав такую замену для всех получим отсортированную по убыванию последовательность , и скалярное произведение такой пары последовательностей будет минимальным. Аналогично для получения максимума во всех парах чисел и , таких что и нужно менять местами и . В результате получится отсортированная по возрастанию последовательность, и скалярное произведение в таком случае будет максимальным.
Данная теорема нашла себе практическое применение в теории матроидов и расписаний.
Примечания
См. также
- Умножение перестановок, обратная перестановка, группа перестановок
- Действие перестановки на набор из элементов, представление в виде циклов
- Таблица инверсий
- Матричное представление перестановок
Источники информации
- Романовский И. В. Дискретный анализ. — 3-е изд. — С. 320 — ISBN 5-7940-0114-3.