Грани числовых множеств — различия между версиями
м |
Rybak (обсуждение | вклад) м (→Существование грани множества: little fix) |
||
Строка 32: | Строка 32: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если А ограничено сверху, то у него существует верхняя грань ( | + | Если А ограничено сверху, то у него существует верхняя грань (аналогично для А, ограниченного снизу). |
|proof= | |proof= | ||
Пусть M {{---}} множество верхних границ А. Так как А ограничено сверху, то <tex> M \ne \varnothing </tex>. | Пусть M {{---}} множество верхних границ А. Так как А ограничено сверху, то <tex> M \ne \varnothing </tex>. | ||
Строка 43: | Строка 43: | ||
#<tex> A \le d \Rightarrow d \in M </tex>. | #<tex> A \le d \Rightarrow d \in M </tex>. | ||
#<tex> d \le M \Rightarrow d </tex> {{---}} наименьшая из верхних границ А. | #<tex> d \le M \Rightarrow d </tex> {{---}} наименьшая из верхних границ А. | ||
− | Получили, что d - верхняя граница А, и d не больше всех верхних границ А <tex>\Rightarrow d = \sup \, A </tex>. | + | Получили, что d {{---}} верхняя граница А, и d не больше всех верхних границ А <tex>\Rightarrow d = \sup \, A </tex>. |
Аналогично для нижней грани ограниченного снизу множества А. | Аналогично для нижней грани ограниченного снизу множества А. | ||
}} | }} |
Версия 04:36, 2 января 2011
Определения
Определение: |
Если множеством.
называется верхней границей множества А. Если , то A называется ограниченным снизу множеством.Если называется нижней границей множества А. , то A называется ограниченным множеством. | , то A называется ограниченным сверху
Определение: |
Если | — ограничено сверху, то наимешьшая из его верхних границ называется верхней гранью. ("супремум")
Определение: |
Если | — ограничено снизу, то наибольшая из его нижних границ называется нижней гранью. ("инфимум")
Существование грани множества
Теорема: |
Если А ограничено сверху, то у него существует верхняя грань (аналогично для А, ограниченного снизу). |
Доказательство: |
Пусть M — множество верхних границ А. Так как А ограничено сверху, то . По определению верхней границы: .По аксиоме непрерывности: :
Получили, что d — верхняя граница А, и d не больше всех верхних границ А Аналогично для нижней грани ограниченного снизу множества А. . |
Принцип вложенных отрезков
Определение: |
Множество Множество называется отрезком или замкнутым промежутком.Обозначение По аналогии определяются и промежутки типа (промежуток) используется, когда неизвестно включение границ. . | называется интервалом или открытым промежутком.
Определение: |
Пусть дана система отрезков: Тогда эта система отрезков называется вложенной. |
Утверждение: |
Определим следующие числовые множества:
Пусть .и существуют. В силу вложенности отрезков: |
Исходя из определения граней, если: