Теорема Дирака — различия между версиями
(→Теорема) (Метки: правка с мобильного устройства, правка из мобильной версии) |
(бред написан какой-то) |
||
Строка 6: | Строка 6: | ||
Рассмотрим путь максимальной длины <tex>P = v_0 v_1 \dots v_s</tex>. Все смежные с <tex>v_0</tex> вершины лежат на <tex>P</tex>. Обозначим <tex>k = \max \{i: v_0 v_i \in E\} </tex>. Тогда <tex>\delta \leqslant \deg v_0 \leqslant k</tex>. Цикл <tex>C = v_0 v_1 \dots v_k v_0</tex> имеет длину <tex>l = k + 1 \geqslant \delta + 1</tex> | Рассмотрим путь максимальной длины <tex>P = v_0 v_1 \dots v_s</tex>. Все смежные с <tex>v_0</tex> вершины лежат на <tex>P</tex>. Обозначим <tex>k = \max \{i: v_0 v_i \in E\} </tex>. Тогда <tex>\delta \leqslant \deg v_0 \leqslant k</tex>. Цикл <tex>C = v_0 v_1 \dots v_k v_0</tex> имеет длину <tex>l = k + 1 \geqslant \delta + 1</tex> | ||
}} | }} | ||
− | |||
− | |||
==Альтернативное доказательство== | ==Альтернативное доказательство== |
Версия 01:43, 15 апреля 2021
Лемма о длине цикла
Лемма (о длине цикла): |
Пусть неориентированный граф и — минимальная степень его вершин. Если , то в графе существует цикл длиной . — произвольный |
Доказательство: |
Рассмотрим путь максимальной длины | . Все смежные с вершины лежат на . Обозначим . Тогда . Цикл имеет длину
Альтернативное доказательство
Теорема (Дирак — альтернативное доказательство): |
Пусть гамильтонов граф. — неориентированный граф и — минимальная степень его вершин. Если и , то — |
Доказательство: |
Для теореме Хватала — гамильтонов граф. | верна импликация , поскольку левая её часть всегда ложна. Тогда по
Теорема (Вывод из теоремы Оре): |
Пусть гамильтонов граф. — неориентированный граф и — минимальная степень его вершин. Если и , то — |
Доказательство: |
Возьмем любые неравные вершины | . Тогда . По теореме Оре — гамильтонов граф.
См. также
Источники информации
- Wikipedia — Dirac's Theorem
- Graham, R.L., Groetschel M., and Lovász L., eds. (1996). Handbook of Combinatorics, Volumes 1 and 2. Elsevier (North-Holland), Amsterdam, and MIT Press, Cambridge, Mass. ISBN 0-262-07169-X.