Транзитивное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
== Определение ==
 
== Определение ==
 
[[Определение отношения|Бинарное отношение]] <tex>R</tex> на [[Множества|множестве]] <tex>X</tex> называется ''транзитивным'', если для любых трёх элементов <tex>a, b, c</tex> из выполнения отношений <tex> aRb </tex> и <tex> bRc </tex> следует выполнение отношения <tex> aRc </tex>.
 
[[Определение отношения|Бинарное отношение]] <tex>R</tex> на [[Множества|множестве]] <tex>X</tex> называется ''транзитивным'', если для любых трёх элементов <tex>a, b, c</tex> из выполнения отношений <tex> aRb </tex> и <tex> bRc </tex> следует выполнение отношения <tex> aRc </tex>.

Текущая версия на 19:07, 4 сентября 2022

Определение

Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется транзитивным, если для любых трёх элементов [math]a, b, c[/math] из выполнения отношений [math] aRb [/math] и [math] bRc [/math] следует выполнение отношения [math] aRc [/math].

Определение:
Бинарное отношение [math]R[/math], заданное на множестве [math]X,[/math] называется транзитивным (англ. transitive binary relation), если для [math]\forall ~a, b, c \in X\colon ~(aRb)~ \land ~(bRc) \Rightarrow ~(aRc)[/math].


Если это условие соблюдается не для всех троек [math]a, b, c[/math], то такое отношение называется нетранзитивным. Например, не для всех троек [math] a, b, c \in \mathbb{N} [/math] верно, что [math]~(a \nmid b)~ \land ~(b \nmid c)~ \Rightarrow ~(a \nmid c) [/math].

Определение:
Бинарное отношение [math]R[/math], заданное на множестве [math]X,[/math] называется нетранзитивным (англ. intransitive binary relation), если [math]\exists ~a, b, c \in X\colon ~(aRb)~ \land ~(bRc)~ \land ~\neg(aRc)[/math].


Существует более "сильное" свойство — антитранзитивность. Под этим термином понимается, что для любых троек [math]a, b, c[/math] отсутствует транзитивность. Антитранзитивное отношение, например — отношение победить в турнирах «на вылет»: если [math]A[/math] победил игрока [math]B[/math], а [math]B[/math] победил игрока [math]C[/math], то [math]A[/math] не играл с [math]C[/math], следовательно, не мог его победить.

Определение:
Бинарное отношение [math]R[/math], заданное на множестве [math]X,[/math] называется антитранзитивным (англ. antitransitive binary relation), если для [math]\forall ~a, b, c \in X\colon ~(aRb)~ \land ~(bRc)~ \Rightarrow ~\neg(aRc)[/math].

Свойства

  • Если отношение [math]R[/math] транзитивно, то обратное отношение [math]R^{-1}[/math] также транзитивно. Пусть [math]aR^{-1}b, ~bR^{-1}c[/math], но по определению обратного отношения [math]cRb, ~bRa[/math]. Так как [math]R[/math] транзитивно, то [math]cRa[/math] и [math]aR^{-1}c[/math], что и требовалось доказать.
  • Если отношения [math]R, ~S[/math] транзитивны, то отношение [math]T~ = ~R \cap S[/math] транзитивно. Пусть [math]aTb, ~bTc \Rightarrow ~aRb, ~aSb, ~bRc, ~bSc[/math]. Из транзитивности [math]R, ~S[/math] следует [math]aRc, ~aSc[/math], но из определения пересечения отношений получаем [math]aTc[/math], что и требовалось доказать.

Примеры транзитивных отношений

  • Отношения частичного порядка:
    • строгое неравенство [math]\colon ~(a \lt b), ~(b \lt c)~ \Rightarrow ~(~a \lt c)\;[/math]
    • нестрогое неравенство [math]\colon ~("\leqslant ")\;[/math]
    • включение подмножества:
      • строгое подмножество [math]\colon ~ ("\subset ")\;[/math]
      • нестрогое подмножество [math]\colon ~ ("\subseteq ")\;[/math]
    • делимость:
      • [math](a \mid b), ~(b \mid c)~ \Rightarrow ~(a \mid c)\;[/math]
      • [math](a \,\vdots\, b), ~(b \,\vdots\, c)~ \Rightarrow ~(a \,\vdots\, c)\;[/math]
  • Равенство [math]\colon ~(a = b), ~(b = c) \Rightarrow ~(a = c)\;[/math]
  • Эквивалентность [math]\colon ~(a \Leftrightarrow b), ~(b \Leftrightarrow c)~ \Rightarrow ~(a \Leftrightarrow c)\;[/math]
  • Импликация [math]\colon ~(a \Rightarrow b), ~(b \Rightarrow c)~ \Longrightarrow ~(a \Rightarrow c)\;[/math]
  • Параллельность [math]\colon ~(a \parallel b), ~(b \parallel c)~ \Rightarrow ~(a \parallel c)\;[/math]
  • Отношение подобия геометрических фигур
  • Являться предком

Примеры нетранзитивных отношений

  • Пищевая цепочка: это отношение не всегда является транзитивным (пример — волки едят оленей, олени едят траву, но волки не едят траву).
  • Быть предпочтительнее чем. Если мы хотим яблоко вместо апельсина, а вместо яблока мы бы хотели арбуз, то это не значит, что мы предпочтём арбуз апельсину.
  • Быть другом.
  • Являться коллегой по работе.
  • Быть подчиненным. Например, во времена феодального строя в Западной Европе была в ходу поговорка: Вассал моего вассала — не мой вассал.
  • Быть похожим на другого человека.

Примеры антитранзитивных отношений

  • Быть сыном (отцом, бабушкой).
  • Игра "Камень, ножницы, бумага". Камень побеждает ножницы, ножницы выигрывают у бумаги, но камень проигрывает бумаге и т. д.

См. также

Источники информации