ДМП-автоматы и неоднознчность — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 32 промежуточные версии 3 участников) | |||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
+ | ==Теоремы== | ||
{{Теорема | {{Теорема | ||
− | |statement= | + | |id=t1 |
+ | |statement=Если <tex>L=N(S)</tex> для некоторого [[Детерминированные автоматы с магазинной памятью|ДМП-автомата]] <tex>S</tex>, то <tex>L</tex> имеет однозначную [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|КС-грамматику]] | ||
|proof= | |proof= | ||
+ | Утверждаем, что конструкция [[Совпадение множества языков МП-автоматов и контекстно-свободных языков#th2|теоремы]] порождает однозначную [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|КС-грамматику]] <tex>\Gamma</tex>, когда [[Автоматы с магазинной памятью|МП-автомат]], к которому она применяется, детерминирован. Вначале вспомним [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора#t2|теорему]], говорящую, что для однозначности грамматики <tex>\Gamma</tex> достаточно показать, что она имеет уникальные левые порождения. | ||
+ | |||
+ | Предположим, <tex>S</tex> допускает <tex>w</tex> по пустому магазину. Тогда он делает это с помощью одной-единственной последовательности переходов, поскольку он детерминирован и не может работать после опустошения магазина. Зная эту последовательность переходов, мы можем однозначно определить выбор каждой продукции в левом порождении <tex>w</tex> в <tex>\Gamma</tex>. Правило автомата <tex>S</tex>, на основании которого применяется продукция, всегда одно. Но правило, скажем, <tex>\delta(q, a, X) = \{(r, Y_1Y_2\dots Y_k)\}</tex>, может порождать много продукций грамматики <tex>\Gamma</tex>, с различными состояниями в позициях, отражающих состояния <tex>S</tex> после удаления каждого из <tex>Y_1</tex>, <tex>Y_2</tex>, <tex>\dots</tex>, <tex>Y_k</tex>. Однако, поскольку <tex>S</tex> детерминирован, осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению <tex>w</tex>. | ||
}} | }} | ||
− | |||
{{Теорема | {{Теорема | ||
− | |statement=Если L= | + | |id=t2 |
+ | |statement=Если <tex>L=L(S)</tex> для некоторого [[Детерминированные автоматы с магазинной памятью|ДМП-автомата]] <tex>S</tex>, то <tex>L</tex> имеет однозначную [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|КС-грамматику]] | ||
|proof= | |proof= | ||
+ | Пусть <tex>\$</tex> будет “концевым маркером”, отсутствующим в цепочках языка <tex>L</tex>, и пусть <tex>L` = L\$</tex>. Таким образом, цепочки языка <tex>L`</tex> представляют собой цепочки из <tex>L</tex>, к которым дописан символ <tex>\$</tex>. Тогда <tex>L`</tex> имеет префиксное свойство, и <tex>L` = N(S`)</tex> для некоторого ДМП-автомата <tex>S`</tex>. По [[#t1|теореме]] существует однозначная грамматика <tex>\Gamma`</tex>, порождающая язык <tex>N(S`)</tex>, т.е. <tex>L`</tex>. | ||
+ | |||
+ | Теперь по [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|грамматике]] <tex>\Gamma`</tex> построим <tex>\Gamma</tex>, для которой <tex>L(\Gamma) = L</tex>. Для этого нужно лишь избавиться от маркера <tex>\$</tex> в цепочках. Будем рассматривать <tex>\$</tex> как переменную грамматики <tex>\Gamma</tex> и введем продукцию <tex>\$ \rightarrow \epsilon</tex>; остальные продукции <tex>\Gamma</tex> и <tex>\Gamma`</tex> одинаковы. Поскольку <tex>L(\Gamma`) = L`</tex>, получаем, что <tex>L(\Gamma) = L</tex>. | ||
+ | |||
+ | Утверждаем, что <tex>\Gamma</tex> однозначна. Действительно, левые порождения в <tex>\Gamma</tex> совпадают с левыми порождениями в <tex>\Gamma`</tex>, за исключением последнего шага в <tex>\Gamma</tex> — изменения <tex>\$</tex> на <tex>\epsilon</tex>. Таким образом, если бы терминальная цепочка <tex>w</tex> имела два левых порождения в <tex>\Gamma</tex>, то <tex>w\$</tex> имела бы два порождения в <tex>\Gamma`</tex>. Поскольку <tex>\Gamma`</tex> однозначна, <tex>\Gamma</tex> также однозначна. | ||
}} | }} | ||
+ | |||
+ | ==См. также== | ||
+ | * [[Детерминированные автоматы с магазинной памятью, допуск по пустому стеку]] | ||
+ | * [[Несовпадение класса языков, распознаваемых ДМП автоматами и произвольными МП автоматами]] | ||
+ | * [[Существенно неоднозначные языки]] | ||
+ | * [[Формальные грамматики]] | ||
+ | |||
+ | ==Источники информации== | ||
+ | * ''Хопкрофт Д., Мотвани Р., Ульман Д.'' {{---}} '''Введение в теорию автоматов, языков и вычислений''', 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2008. — 528 с. : ISBN 978-5-8459-1347-0 (рус.) | ||
+ | [[Категория: Теория формальных языков]] | ||
+ | [[Категория: Контекстно-свободные грамматики]] |
Текущая версия на 19:11, 4 сентября 2022
Эта статья находится в разработке!
Теоремы
Теорема: |
Если ДМП-автомата , то имеет однозначную КС-грамматику для некоторого |
Доказательство: |
Утверждаем, что конструкция теоремы порождает однозначную КС-грамматику , когда МП-автомат, к которому она применяется, детерминирован. Вначале вспомним теорему, говорящую, что для однозначности грамматики достаточно показать, что она имеет уникальные левые порождения. Предположим, допускает по пустому магазину. Тогда он делает это с помощью одной-единственной последовательности переходов, поскольку он детерминирован и не может работать после опустошения магазина. Зная эту последовательность переходов, мы можем однозначно определить выбор каждой продукции в левом порождении в . Правило автомата , на основании которого применяется продукция, всегда одно. Но правило, скажем, , может порождать много продукций грамматики , с различными состояниями в позициях, отражающих состояния после удаления каждого из , , , . Однако, поскольку детерминирован, осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению . |
Теорема: |
Если ДМП-автомата , то имеет однозначную КС-грамматику для некоторого |
Доказательство: |
Пусть теореме существует однозначная грамматика , порождающая язык , т.е. . будет “концевым маркером”, отсутствующим в цепочках языка , и пусть . Таким образом, цепочки языка представляют собой цепочки из , к которым дописан символ . Тогда имеет префиксное свойство, и для некоторого ДМП-автомата . ПоТеперь по грамматике построим , для которой . Для этого нужно лишь избавиться от маркера в цепочках. Будем рассматривать как переменную грамматики и введем продукцию ; остальные продукции и одинаковы. Поскольку , получаем, что . Утверждаем, что однозначна. Действительно, левые порождения в совпадают с левыми порождениями в , за исключением последнего шага в — изменения на . Таким образом, если бы терминальная цепочка имела два левых порождения в , то имела бы два порождения в . Поскольку однозначна, также однозначна. |
См. также
- Детерминированные автоматы с магазинной памятью, допуск по пустому стеку
- Несовпадение класса языков, распознаваемых ДМП автоматами и произвольными МП автоматами
- Существенно неоднозначные языки
- Формальные грамматики
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2008. — 528 с. : ISBN 978-5-8459-1347-0 (рус.)