1632
правки
Изменения
м
===Применение турбо-сдвига в случае |v| Тем не менее, при < |tex> \mathrm{size}(u|===При ) <tex>|\mathrm{size}(v| < |u|)</tex>, если длина сдвига плохого символа больше, чем длина сдвига хорошего суффикса и длины турбо-сдвига, то длина фактического сдвига должна быть больше или равна <tex>|\mathrm{size}(u| ) + 1</tex>. Действительно, в этом случае два символа <tex>c</tex> и <tex>d</tex> различны, так как мы предположили, что предыдущий сдвиг был сдвигом хороший суффикса. Тогда сдвиг больший, чем турбо-сдвиг, но меньший, чем <tex>|\mathrm{size}(u| ) +1</tex> будет выравнивать <tex>c</tex> и <tex>d</tex> с таким же символом в <tex>v</tex>, в этом случае длина фактического сдвига должна быть по крайней мере равен <tex>|\mathrm{size}(u| ) +1</tex>.
<font color=green>//x {{--- }} шаблон, y {{--- }} текст, m {{--- }} длина шаблона, n {{--- }} длина текста</font> '''function''' TBM(x: '''char'''[m] x, y: '''char'''[n] y, '''int''' m, '''int''' n): '''List<int>'''
rollbackEdits.php mass rollback
'''Турбо-алгоритм Бойера-Мура''' (англ. ''Turbo Boyer-Moore'') является улучшением [[Алгоритм Бойера-Мура|алгоритма Бойера-Мура]]. Турбо-алгоритм, разработанный группой учёных во главе с М.Крочемором, предлагает другой подход к коротким алфавитам и заодно решает вторую проблему — квадратичную сложность в худшем случае. Помимо эвристики стоп-символа и эвристики совпавшего суффикса, применяется третья эвристика — эвристика турбосдвига.
==Алгоритм==
Турбо-алгоритм Бойера-Мура не нуждается в дополнительном препроцессинге и требует только постоянную дополнительную память относительно оригинального алгоритма Бойера-Мура. Он состоит в запоминании сегмента текста, который соответствует суффиксу шаблона , совпавшему во время предыдущего шага алгоритма (и только тогда, когда сдвиг хорошего суффикса был выполнен).
Эта методика представляет два преимущества:
# Можно перепрыгнуть через этот сегмент.
===Определение турбо-сдвига===
Пусть <tex>u</tex> — запомненный сегмент, а <tex>v</tex> — cуффикс, совпавший во время текущей попытки, такой что <tex>uzv</tex> — суффикс <tex>x</tex>. Тогда <tex>av</tex> — суффикс <tex>x</tex>, два символа <tex>a</tex> и <tex>b</tex> встречаются на расстоянии <tex>p</tex> в тексте, и суффикс <tex>x</tex> длины <tex>\mathrm{size}(uzv)</tex> имеет период длины <tex>p</tex>, а значит не может перекрыть оба появления символов <tex>a</tex> и <tex>b</tex> в тексте. Наименьший возможный сдвиг имеет длину <tex>\mathrm{size}(u) - \mathrm{size}(v)</tex> (его мы и называем турбо-сдвигом).[[Файл:Tbm1.png|600px|center]]
[[Файл:Tbm2.png|600px|center]]
Нельзя совместить символы <tex>c \neq d</tex> с одним и тем же символом в <tex>v</tex>.
===Описание алгоритма===
В [[Алгоритм Бойера-Мура|алгоритм Бойера-Мура]] дополнительно добавится запоминание длины <tex>|\mathrm{size}(u|)</tex> сегмента текста, который соответствует суффиксу шаблона во время последней попытки, который мы не будем лишний раз рассматривать при сравнении суффиксов двух подстрок, а также запоминании размера сдвига <tex>\mathrm{shift}</tex>, который мы совершили. Вычислять его будем следующим образом: Пусть <tex>\mathrm{size}(y) = n</tex>, <tex>\mathrm{size}(x)=m</tex> и <tex>\sigma</tex> {{---}} размер алфавита. * Если текущем шаге у нас подстрока совпала с шаблоном <tex>x</tex>, то <tex>\mathrm{shift} = bmGs[0]</tex> (<tex>bmGs[0]</tex> равен периоду шаблона <tex>x</tex>), <tex>|\mathrm{size}(u| ) = m - \mathrm{shift}</tex>.
* Иначе возможны два случая:
** Если сдвиг хорошего суффикса не меньше турбо-сдвига и сдвига плохого символа, тогда <tex> \mathrm{shift} = bmGs[j+1]</tex>, <tex>|\mathrm{size}(u| ) = \min(m - \mathrm{shift}, |\mathrm{size}(v|))</tex>, где <tex>v</tex> {{---}} текущая подстрока.** В противном случае, <tex>|\mathrm{size}(u| ) = 0</tex>, <tex>\mathrm{shift} = \max( \mathrm{turboShift}, \mathrm{bCShift})</tex>, где <tex> \mathrm{turboShift}</tex> {{---}} длина турбо-сдвига, <tex> \mathrm{bCShift}</tex> {{---}} длина сдвига плохого символа. Если турбо-сдвиг меньше сдвига плохого символа, то <tex> \mathrm{shift}</tex> должен быть не больше <tex>|\mathrm{size}(u_0| ) + 1</tex>, где <tex>u_0</tex> {{---}} сегмент текста, рассматриваемый на прошлом шаге.
==Псевдокод==
Стадия препроцессинга совпадает со стадией препроцессинга в [[Алгоритм Бойера-Мура|алгоритме Бойера-Мура]], функция вычислений сдвигов плохих символов и функция вычисления хороших суффиксов не меняются, меняется только сам алгоритм, в него добавляется обработка турбо-сдвигов.
'''int''' i = 0
'''int''' u = 0
'''int''' shift = m
<font color=green>//answer {{- --}} массив, в который мы сохраняем индексы, начиная с которых, подстроки текста совпадают с шаблоном</font>
'''List<int>''' answer
==Асимптотика==
{{Утверждение|statement= Фаза препроцессинга требует <tex>O(m + \sigma)</tex> времени и памяти, где <tex>\sigma</tex> {{---}} размер алфавита, <tex>m</tex> {{---}} длина шаблона. |proof= Стадия препроцессинга совпадает со стадией препроцессинга в [[Алгоритм Бойера-Мура|алгоритме Бойера-Мура]]<ref>В этом конспекте приведена реализация за <tex>O(n^2)</tex> и неконстантную память, реализацию за <tex>O(n)</tex> и константную память можно посмотреть вот [http://www-igm.univ-mlv.fr/~lecroq/string/node14.html#SECTION00140 тут] </ref>, поэтому рассмотрим только стадию поиска.}}
{{Утверждение|statement= Фаза поиска требует <tex>O(n)</tex> времени, где <tex>n</tex> {{---}} длина строки, в которой выполняется поиск.
}}
==Пример работы==
Пусть нам дана строка <tex>y = GCATCGCAGAGAGTATACAGTACG</tex> и образец <tex>x=GCAGAGAG</tex>.
Построим массив <tex>bmBc</tex>:
|[[Файл:Raita1.png|550px]]
|<tex>(7, 1)</tex>
|Делаем сравнение последних символовСравниваем последние символы, оно неудачноони неравны, поэтому сдвигаемся на <tex>bmGs[7] = bmBc[A]-8+8 = 1</tex>.
|-align="center"
|[[Файл:Tbme2.PNG|550px]]
|}
В итоге, чтобы найти одно вхождение образца длиной <tex>m = 8</tex> в образце длиной <tex>n = 24</tex> нам понадобилось <tex>15</tex> сравнений символов.
==См. также==
* [[Алгоритм Кнута-Морриса-Пратта|Алгоритм Кнута-Морриса-Пратта]]
* [[Алгоритм Апостолико-Крочемора|Алгоритм Апостолико-Крочемора]]
==Примечания==
<references />
==Источники информации==
* [[wikipedia:ru:Алгоритм_Бойера_—_Мура|Википедия {{---}} Алгоритм Бойера-Мура]]