1632
правки
Изменения
м
fromfront[1] = -<tex>\infty</tex><font color=green>// первая прямая покрывает все x-ы, начиная с -∞ </font>
fromfront[sz + 1] = x <font color=green>// добавили новую прямую </font >
rollbackEdits.php mass rollback
Convex hull trick {{---}} один из методов оптимизации [[Динамическое_программирование | динамического программирования]], использующий идею [[Статические_выпуклые_оболочки:_Джарвис,_Грэхем,_Эндрю,_Чен,_QuickHull|выпуклой оболочки]]. Позволяет улучшить ассимптотику асимптотику решения некоторых задач, решемых методом динамического программирования, с <math>O(n^2)</math> до <tex>O(n\cdot\log(n))</tex>. Техника впервые появилась в 1995 году (задачу на нее предложили в USACO {{---}} национальной олимпиаде США по программированию). Массовую известность получила после IOI (международной олимпиады по программированию для школьников) 2002.
==Пример задачи, решаемой методом convex hull trick==
|definition = Есть <math>n</math> деревьев с высотами <tex>a_1, a_2, \dots, a_n</tex> (в метрах). Требуется спилить их все, потратив минимальное количество монет на заправку
бензопилы. Но пила устроена так, что она может спиливать только по <math>1</math> метру от дерева, к которому ее применили. Также после
срубленного метра (любого дерева) пилу нужно заправлять, платя за бензин определенной определенное кол-во монет. Причем стоимость
бензина зависит от срубленных (полностью) деревьев. Если сейчас максимальный индекс срубленного дерева равен <tex>i</tex>, то цена заправки
равна <tex>c_i</tex>. Изначально пила заправлена.
Понятно, что нужно затратив минимальную стоимость срубить последнее (<tex>n</tex>-е) дерево, т.к. после него все деревья можно будет рубить бесплатно (т.к. <tex>c[n] = 0</tex>). Посчитаем следующую динамику : <tex>dp[i]</tex> {{---}} минимальная стоимость, заплатив которую можно добиться того, что дерево номер <tex>i</tex> будет срублено.
База динамики : <tex>dp[1] = 0</tex>, т.к. изначально пила заправлена и высота первого дерева равна <math>1</math>, по условию задачи.
Переход динамики : понятно, что выгодно рубить сначала более дорогие и низкие деревья, а потом более высокие и дешевые (док-во этого факта оставляется читателям как несложное упражнение, т.к. эта идея относится скорее к теме [[Теорема_Радо-Эдмондса_(жадный_алгоритм)|жадных алгоритмов]], чем к теме данной статьи). Поэтому перед <tex>i</tex>-м деревом мы обязательно срубили какое-то <tex>j</tex>-е, причем <tex>j \leqslant i - 1</tex>. Поэтому чтобы найти <tex>dp[i]</tex> нужно перебрать все <tex>1 \leqslant j \leqslant i - 1</tex> и попытаться использовать ответ для дерева номер <tex>j</tex>. Итак, пусть перед <tex>i</tex>-м деревом мы полностью срубили <tex>j</tex>-е, причем высота <tex>i</tex>-го дерева составляет <tex>a[i]</tex>, а т.к. последнее дерево, которое мы срубили, имеет индекс <tex>j</tex>, то стоимость каждого метра <tex>i</tex>-го дерева составит <tex>c[j]</tex>. Поэтому на сруб <tex>i</tex>-го дерева мы потратим <tex>a[i] \cdot c[j]</tex> монет. Также не стоит забывать , что ситуацию, когда <tex>j</tex>-е дерево полностью срублено, мы получили не бесплатно, а за <tex>dp[j]</tex> монет.
Итоговая формула пересчета : <tex>dp[i] = \min\limits_{j=1...i-1} (dp[j] + a[i] \cdot c[j])</tex>.
[[Файл:picture1convexhull.png]]
Выделим множество точек <tex>(x_0, y_0)</tex> , таких что все они принадлежат одной из прямых и при этом нету ни одной прямой <tex>y’(x)</tex>, такой что <tex>y’(x_0) < y_0</tex>. Иными словами возьмем «выпуклую (вверх) оболочку» нашего множества прямых (её еще называют нижней ошибающей огибающей множества прямых на плоскости). Назовем ее «<tex>y = convex(x)</tex>». Видно, что множество точек <math>(x, convex(x))</math> представляет собой выпуклую вверх функцию.
==Цель нижней огибающей множества прямых==
Пусть мы считаем динамику для <tex>i</tex>-го дерева. Его задает <tex>x[i]</tex>. Итак, нам нужно для данного <tex>x[i]</tex> найти <tex>\min\limits_{j=0..i-1}(k[j] \cdot x[i] + b[ij]) = \min\limits_{j=0..i-1}(y[j](x[i]))</tex>. Это выражение есть <math>convex(x[i])</math>. Из монотонности угловых коэффицентов отрезков, задающих выпуклую оболочку, и их расположения по координатам x следует то, что отрезок, который пересекает прямую <tex>x = x[i]</tex>, можно найти [[Целочисленный_двоичный_поиск|бинарным поиском]]. Это потребует <tex>O(\log(n))</tex> времени на поиск такого <tex>j</tex>, что <tex>dp[i] = k[j] \cdot x[i] + b[j]</tex>. Теперь осталось научиться поддерживать множество прямых и быстро добавлять <tex>i</tex>-ю прямую после того, как мы посчитали <tex>b[i] = dp[i]</tex>.
Воспользуемся идеей алгоритма построения выпуклой оболочки множества точек. Заведем 2 стека <tex>k[]</tex> и <tex>b[]</tex>, которые задают прямые в отсортированном порядке их угловыми коэффицентами и свободными членами. Рассмотрим ситуацию, когда мы хотим добавить новую (<tex>i</tex>-тую) прямую в множество. Пусть сейчас в множестве лежит <tex>sz</tex> прямых (нумерация с 1). Пусть <tex>(x_L, y_L)</tex> {{---}} точка пересечения <tex>sz - 1</tex>-й прямой множества и <tex>sz</tex>-й, а <tex>(x_R, y_R)</tex> {{---}} точка пересечения новой прямой, которую мы хотим добавить в конец множества и <tex>sz</tex>-й. Нас будут интересовать только их <tex>x</tex>-овые координаты <tex>x_L</tex> и <tex>x_R</tex>, соответственно. Если оказалось, что новая прямая пересекает <tex>sz</tex>-ю прямую выпуклой оболочки позже, чем <tex>sz</tex>-я <tex>sz - 1</tex>-ю, т.е. <tex>(x_L \geqslant x_R)</tex>, то <tex>sz</tex>-ю удалим из нашего множества, иначе - остановимся. Так будем делать, пока либо число прямых в стеке не станет равным 2, либо <tex>x_L</tex> не станет меньше <tex>x_R.</tex>
|id=th1239.
|statement=Алгоритм построения нижней огибающей множества прямых корректен.
|proof=Достаточно показать, что последнюю прямую нужно удалить из множества <tex>\Leftrightarrow</tex>, когда она наша новая прямая пересекает ее в точке с координатой по оси X, меньшей, чем последняя - предпоследнюю.
Пусть <tex>Y(x) = Kx + B</tex> {{---}} уравнение новой прямой, <tex>y[i](x) = K[i]x + B[i]</tex> {{---}} уравнения прямых множества. Тогда т.к. <tex>K < K[sz]</tex>, то при <tex>x \in [- \infty; x_R] : y[sz](x) <= Y(x)</tex>, а т.к. <tex> K[sz] < K[sz - 1]</tex>, то при <tex>x \in [x_L; + \infty] : y[sz - 1](x) \geqslant y[sz](x)</tex>. Если <tex>x_L < x_R</tex>, то при <tex>x \in [x_L; x_R] : y[sz - 1] \geqslant y[sz](x) и Y(x) \geqslant y[sz](x)</tex>, т.е. на отрезке <tex>[x_L; x_R]</tex> прямая номер sz лежит ниже остальных и её нужно оставить в множестве. Если же <tex>x_L > x_R</tex>, то она ниже всех на отрезке <tex>[x_L; x_R] = \varnothing </tex>, т.е. её можно удалить из множества.
'''int''' <tex>\mathtt{ConvexHullTrick}</tex>('''int''' a[n], '''int''' c[n])
st[1] = 1
sz = 1 <font color=green>// текущий размер выпуклой оболочки </font>
pos = 1 <font color=green>// текущая позиция первого такого j, что x[i] \geqslant front[st[j]] </font >
sz = sz - 1<font color=green>// удаляем последнюю прямую, если она лишняя </font >
st[sz + 1] = i
sz = sz + 1
'''return''' dp[n]
|id=th12392.
|statement=Если есть <tex>3</tex> вектора <tex>a, b, c</tex>, таких что <tex>[a-b, b-c] < 0</tex> то либо <math>(a, u) < (b, u)</math>, либо <math>(c, u) < (b, u)</math>, где вектор <math>u = (1; k)</math>.
|proof=По условию теоремы известно, что <tex>[a-b, b-c] < 0 \Leftrightarrow (a_{x} - b_{x})\cdot(b_{y} - c_{y}) < (a_{y} - b_{y}) \cdot (b_{x} - c_{x})</tex> (*). Предположим (от противного), что <tex>(b, u) < (a, u) \Leftrightarrow b_{x} + k \cdot b_{y} < c_ a_{x} + k \cdot c_a_{y} \Leftrightarrow (b_{x} - c_a_{x}) < k \cdot (c_a_{y} - b_{y})</tex> и при этом <tex>(b, u) < (c, u) \Leftrightarrow b_{x} + k \cdot b_{y} < a_c_{x} + k \cdot a_c_{y} \Leftrightarrow (a_c_{x} - b_{x}) > k \cdot (b_{y} - a_c_{y})</tex>.
Подставим эти неравенства в (*). Получим цепочку неравенств : <tex>k \cdot (a_{y} - b_{y})</tex><tex> \cdot (c_{y} - b_{y}) = k</tex><tex> \cdot (b_{y} - a_{y}) \cdot </tex><tex>(b_{y} - c_{y})</tex> <tex> < (a_{x} - b_{x})</tex><tex> \cdot (b_{y} - c_{y})</tex><tex> < (a_{y} - b_{y}) \cdot </tex><tex>(b_{x} - c_{x})</tex> <tex>< k \cdot (a_{y} - b_{y})</tex><tex> \cdot (c_{y} - b_{y})</tex>. Получили противоречие : <tex>k \cdot (a_{y} - b_{y}) \cdot (c_{y} - b_{y}) < k \cdot (a_{y} - b_{y}) \cdot (c_{y} - b_{y})</tex>. Значит предположение неверно, чтд.