Теорема о компактности сопряжённого оператора — различия между версиями
Ulyantsev (обсуждение | вклад) (→Доказательство теоремы) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 3 участников) | |||
Строка 14: | Строка 14: | ||
Рассмотрим ''сужение'' функционалов <tex>\phi_n</tex> на <tex>K</tex>. | Рассмотрим ''сужение'' функционалов <tex>\phi_n</tex> на <tex>K</tex>. | ||
− | 3. Докажем | + | 3. Докажем [[равностепенная непрерывность|равностепенную непрерывность]] этой последовательности: рассмотрим <tex>y, z \in K</tex>. |
Норма | Норма | ||
:<tex>\|\phi_n(z) - \phi_n(y)\| = \|\phi_n(z - y)\| \le \|\phi_n\| \|z - y\| \le \|z - y\|</tex> | :<tex>\|\phi_n(z) - \phi_n(y)\| = \|\phi_n(z - y)\| \le \|\phi_n\| \|z - y\| \le \|z - y\|</tex> |
Текущая версия на 19:26, 4 сентября 2022
Пусть
является компактным оператором. Тогда сопряженный к нему оператор также является компактным.Доказательство теоремы
Итак, рассмотрим оператор
. По определению сопряженного оператора, если , то . Будем последовательны.1. Для доказательства необходимо показать, что множество
будет относительно компактно в . Для этого надо показать, что если взята последовательность такая, что , то можно выбрать такую, что сходится в .2. Рассмотрим в
единичный замкнутый шар . По компактности оператора будет метрическим компактом. Рассмотрим сужение функционалов на .3. Докажем равностепенную непрерывность этой последовательности: рассмотрим . Норма
не зависит от
, а следовательно равностепенно непрерывна.4. Выполняется и равномерная ограниченность последовательности. Для любого
:- .
5. Таким образом
равномерно ограничена и равностепенно непрерывна, следовательно, по теореме Арцела — Асколи из нее можно выделить равномерно сходящуюся последовательность в .Для доказательства теоремы осталось показать, что
сходится в . Для этого достаточно выяснить, что равномерно сходится (при устремлении к бесконечности) на .6. Рассмотрим
. По равномерной сходимости на : .7. Следовательно, для любого
верно . Замечая, что , приходим к равномерной сходимости на .Таким образом, теорема доказана.