1632
правки
Изменения
Турниры
,rollbackEdits.php mass rollback
{{Определение
|definition = '''Турнир''' (англ. ''Tournament'') — [[ориентированный граф]], между любой парой различных вершин которого есть ровно одно ориентированное ребро.
}}
Турниром из <tex>n</tex> вершин можно изобразить исход игры между <tex>n</tex> людьми, где каждый играет с каждым. Тогда ребро будет ориентировано от выигравшего человека к проигравшему.
'''База индукции''' <tex>n = 1</tex>: верно, т.к. есть одна вершина степени <tex>0</tex>
'''Переход индукции''' Пусть доказано для <tex>n - 1</tex>. В ациклическом графе существует сток <tex>t, deg^{+}t = 0</tex>. Рассмотрим граф <tex>T-t</tex>. <tex>Deg^{+}(T - t) = \{0, 1, \ldots, n - 2\}</tex> . Т.к. из каждой <tex>v \in V \setminus \{t\}</tex> ведет одно ребро в <tex>t</tex>, <tex> Deg^{+}(T)=\{deg^{+}t\} \cup \{x + 1 \mid x \in Deg^{+}(T -t)\} = \{0, 1, \ldots, n - 1\}</tex>. Для степеней захода можно доказать аналогично, рассмотрев исток вместо стока.
<tex>4 \Rightarrow 5: </tex> По [[Теорема Редеи-Камиона|теореме Редеи-Камиона]], в любом турнире есть гамильтонов путь, докажем индукцией по <tex>n</tex>, что этот путь единственный.
'''База индукции''' <tex>n = 1</tex>: верно, путь из одной вершины.
'''Переход индукции''' Рассмотрим вершину <tex>s: deg^{-}(s) = 0</tex>. Она будет первой в гамильтоновом пути (иначе мы в нее не зайдем). Рассмотрим граф <tex>T - s</tex>. Т.к. <tex>s</tex> была соединена со всеми его вершинами, их степени меньше на <tex>1</tex> соответствующих степеней в исходном турнире, значит <tex>Deg^{-}(T-s)=\{0,1, \ldots, n - 2\}</tex>, следовательно в <tex>T-s</tex> существует единственный гамильтонов путь <tex>v_1, v_2, \ldots v_{n -1}</tex> (по предположению). Пусть существуют <tex>2</tex> гамильтонова пути, начинающиеся на <tex>s</tex>, но тогда существуют 2 пути в <tex>T-s</tex> {{---}} противоречие.
<tex>5 \Rightarrow 1: </tex> Пусть <tex>P=v_1, v_2, \ldots, v_n</tex> — единственный гамильтонов путь. Пусть найдется <tex>m</tex> — наименьший индекс такой, что в вершину <tex>v_m</tex> идет ребро из вершины с большим индексом, а <tex>v_k</tex> — вершина с наибольшим индексом, из которой ребро ведет в <tex>v_m</tex>. Возможно несколько случаев:
# <tex> m \neq 1, k \neq n: </tex> Из <tex>v_{m -1}</tex> ведет ребро в <tex>v_{m+1}</tex> (по минимальности <tex>m</tex>), а из <tex>v_m</tex> ведет ребро в <tex>v_{k +1}</tex> (по максимальности <tex>k</tex>). Тогда будет существовать еще один гамильтонов путь <tex>P_1 = v_1, \ldots, v_{m-1}, v_{m+1}, \ldots, v_{k}, v_m, v_{k+1}, \ldots, v_n</tex>.
# <tex> m \neq 1, k = n: </tex> <tex>P_1 = v_1, \ldots, v_{m-1}, v_{m+1}, \ldots, v_{n}, v_m</tex>.
# <tex> m = 1, k \neq n:</tex> <tex>P_1 = v_2, \ldots, v_{k}, v_1, v_{k+1}</tex>
#<tex> m = 1, k = n:</tex> <tex>P_1 = v_2, \ldots, v_n, v_1</tex>
'''Замечание''' Может достигаться равенство <tex>m + 1 = n</tex>, в этом случае нужно исключить из пути <tex>2</tex> последовательных вхождения <tex>v_n</tex>.
Во всех случаях получаем противоречие с единственностью гамильтонова пути, значит не существует такого <tex>m</tex>, т.е <tex>(v_i, v_j) \in E \Leftrightarrow i < j</tex>. Значит <tex>\forall i, j, k: 1 \leqslant i, j, k \leqslant n</tex> <tex> (v_i, v_j) \in E \land (v_j, v_k) \in E \Rightarrow i < j \land j < k \Rightarrow (v_i, v_k) \in E </tex>.
}}
===Теория Рамсея===
Транзитивные турниры играют существенную роль в [[Теория_Рамсея | теории Рамсея]], изучающей условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок. В частности, любой турнир с <tex>n</tex> вершинами содержит транзитивный подтурнир с <tex>1+\lfloor\log_2 n\rfloor</tex> вершинами. Для его построения выберем любую вершину <tex>v</tex> как часть этого подтурнира и построим подтурнир рекурсивно на множестве либо входящих соседей вершины <tex>v</tex>, либо на множестве исходящих соседей, в зависимости от того, какое множество больше.
<br clear="all">
===Конденсация==={{Утверждение|statement = Конденсация любого турнира является транзитивным турниром. |proof = Рассмотрим <tex>2</tex> компоненты сильной связности <tex>U, V</tex>, найдутся <tex>u \in U, v \in V: (u, v) \in E</tex>, либо <tex>(v, u) \in E </tex>, значит в конденсации есть либо ребро <tex>(U,V)</tex>, либо <tex>(V,U)</tex>. Т.к. мы рассмотрели произвольную пару вершин конденсации турнира, она является турниром. Конденсация любого орграфа ациклична, а по доказанной [[#theorem1|теореме]], это означает, что она транзитивна. }}Таким образом, даже если турнир не является транзитивным, сильно связанные компоненты турнира могут быть [[Отношение порядка|вполне упорядочены]]. В самом деле, по [[#theorem1|теореме]], в турнире существует гамильтонов путь, значит вершины могут быть упорядочены по своим позициям в этом пути. ===Сильно связные турниры===
{{Определение|definition = Турнир называется [[Отношение связности, компоненты связности#sc_def |сильно связным]], если из любой вершины существуют пути до всех других.}}
{{Определение
Не все турниры гамильтоновы. Определение не исключает существование вершины с полустепенью исхода <tex>\deg^{-}</tex> или захода <tex>\deg^{+}</tex> равной нулю — в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).
[[Теорема Редеи-Камиона]] устанавливает 2 два следующих факта:
# Все турниры полугамильтоновы.
# Турнир гамильтонов тогда и только тогда, когда он сильно связен.
* [[Гамильтоновы графы]]
* [[Теорема Редеи-Камиона]]
* [http://epubs.siam.org/doi/abs/10.1137/0403002 Поиск гамильтонова цикла за <tex>O(n\cdot log(n))</tex>]
==ЛитератураИсточники информации==
* Асанов М. О., Баранский В. А., Расин В. В. '''Дискретная математика: графы, матроиды, алгоритмы''' — НИЦ РХД, 2001. — ISBN 5-93972-076-5
* [[wikipedia:Tournament_(graph_theory) | Wikipedia {{---}} Турнир]]
* [http://www-math.ucdenver.edu/~wcherowi/courses/m4408/gtln12.html]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Обходы графов]]
[[Категория: Гамильтоновы графы]]