|
|
(не показано 14 промежуточных версий 12 участников) |
Строка 1: |
Строка 1: |
− | ==Лемма о длине цикла==
| + | 9м топ остальным по лицу хлоп |
− | {{Лемма
| |
− | |about=о длине цикла
| |
− | |statement= Пусть <tex>G</tex> {{---}} произвольный [[Основные определения теории графов#def_undirected_graph_1|неориентированный граф]] и <tex>\delta</tex> {{---}} минимальная [[Основные определения теории графов#def_graph_degree_1|степень]] его вершин. Если <tex>\delta \geqslant 2</tex>, то в графе <tex>G</tex> существует [[Основные определения теории графов#def_graph_cycle_1|цикл]] <tex>C</tex> длиной <tex>l \geqslant \delta + 1</tex>.
| |
− | |proof=
| |
− | Рассмотрим путь максимальной длины <tex>P = v_0 v_1 \dots v_s</tex>. Все смежные с <tex>v_0</tex> вершины лежат на <tex>P</tex>. Обозначим <tex>k = \max \{i: v_0 v_i \in E\} </tex>. Тогда <tex>\delta \leqslant \deg v_0 \leqslant k</tex>. Цикл <tex>C = v_0 v_1 \dots v_k v_0</tex> имеет длину <tex>l = k + 1 \geqslant \delta + 1</tex>
| |
− | }}
| |
− | | |
− | ==Теорема==
| |
− | | |
− | {{Теорема
| |
− | |about=Дирак
| |
− | |statement=
| |
− | Пусть <tex>G</tex> {{---}} неориентированный граф и <tex>\delta</tex> {{---}} минимальная степень его вершин. Если <tex>n \geqslant 3</tex> и <tex>\delta \geqslant n/2</tex>, то <tex>G</tex> {{---}} [[Гамильтоновы графы|гамильтонов граф]].
| |
− | |proof=
| |
− | Пусть <tex>C</tex> {{---}} цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \geqslant \delta + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex>G \backslash C \ne \varnothing</tex>. Рассмотрим путь <tex>P = x \dots y : P \cap C = \{y\}</tex> наибольшей длины <tex>m</tex>. Заметим, что по условию <tex>\delta \geqslant n/2</tex>, а значит <tex>\delta \geqslant n - \delta > n - l = |V(G \backslash C)|</tex> и каждая вершина из <tex>G \backslash C</tex> смежна с некоторыми вершинами из <tex>C</tex>.
| |
− | Заметим, что вершина <tex>x</tex> не может быть смежна:
| |
− | * с вершинами из <tex>C</tex>, расстояние от которых до <tex>y</tex> (по <tex>C</tex>) не превышает m. Действительно, пусть вершина <tex>v \in C</tex> и расстояние от <tex>v</tex> до <tex>y</tex> по циклу меньше либо равно <tex>m</tex>. Тогда этот участок цикла можно заменить на <tex>v \rightarrow x \rightarrow P \rightarrow y</tex>, длина которого <tex>m + 1</tex>. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикл <tex>C</tex>.
| |
− | * двум смежным вершинам на <tex>C</tex>. Пусть <tex>u, v \in C</tex> и <tex>\{(u, v), (u, x), (x, v)\} \in E</tex>. Тогда заменив ребро <tex>(u, v)</tex> на <tex>u \rightarrow x \rightarrow v</tex>, увеличим длину цикла на <tex>1</tex>.
| |
− | * вершинам из <tex>G \backslash (C \cup P)</tex>, поскольку <tex>P</tex> максимальный.
| |
− | | |
− | Получаем <tex>deg\ x \leqslant m + (l - 2m)/2 = l/2 < n/2 \leqslant \delta</tex>. Противоречие.
| |
− | }}
| |
| | | |
| ==Альтернативное доказательство== | | ==Альтернативное доказательство== |
Строка 54: |
Строка 32: |
| [[Категория: Алгоритмы и структуры данных]] | | [[Категория: Алгоритмы и структуры данных]] |
| [[Категория: Обходы графов]] | | [[Категория: Обходы графов]] |
| + | [[Категория: Гамильтоновы графы]] |