Теорема Дирака — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
9м топ остальным по лицу хлоп
 
9м топ остальным по лицу хлоп
  

Текущая версия на 19:33, 4 сентября 2022

9м топ остальным по лицу хлоп

Альтернативное доказательство

Теорема (Дирак — альтернативное доказательство):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Для [math]\forall k[/math] верна импликация [math]d_k \leqslant k \lt n/2 \Rightarrow d_{n-k} \geqslant n-k[/math], поскольку левая её часть всегда ложна. Тогда по теореме Хватала [math]G[/math] — гамильтонов граф.
[math]\triangleleft[/math]
Теорема (Вывод из теоремы Оре):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Возьмем любые неравные вершины [math] u, v \in G [/math]. Тогда [math] \displaystyle \deg u + \deg v \geqslant \frac n 2 + \frac n 2 = n [/math]. По теореме Оре [math] G [/math] — гамильтонов граф.
[math]\triangleleft[/math]

См. также

Источники информации

  • Wikipedia — Dirac's Theorem
  • Graham, R.L., Groetschel M., and Lovász L., eds. (1996). Handbook of Combinatorics, Volumes 1 and 2. Elsevier (North-Holland), Amsterdam, and MIT Press, Cambridge, Mass. ISBN 0-262-07169-X.