Изменения

Перейти к: навигация, поиск

Формула включения-исключения

4403 байта добавлено, 19:33, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Теорема
|statement=Пусть <tex dpi = "140"> A = \bigcup \limits_{i=1}^{n}A_i </tex> , тогда по формуле включения-исключения: <center> <tex dpi = "140"> | A | = \sum \limits_{I \in 2^N-1} (-1)^{|I|+1} \left| \bigcap \limits_{ j \in I} A_j \right| </tex> </center>Причем <tex dpi = "140"> N = \{ 1,2, \ldots ,n \} </tex>. Здесь за <tex dpi = "140"> 2^N - 1 </tex> обозначим множество всех непустых подмножеств <tex dpi = "140"> N </tex>.
Рассмотрим некоторый элемент <tex dpi = "140"> x \in \bigcup \limits_{i=1}^{n}A_i </tex>. Пусть <tex dpi = "140"> x \in \bigcap \limits_{j=1}^{t}A_{i_j} </tex>. Тогда найдем число вхождений элемента <tex dpi = "140"> x </tex> в правую часть формулы.
<tex dpi = "140">k = (-1) ^ {t + 1} {t \choose t} + (-1) ^ {t} {t \choose {t - 1}} + \ldots + (-1)^2 {t \choose 1} + (-1) {t \choose 0} = -\sum \limits_{j = 1}^{t} (-1)^j {t \choose j} </tex><tex dpi = "140"> = {t \choose 0} - \sum \limits_{j = 0}^{t} (-1)^j {t \choose j} </tex>
Докажем, что <tex dpi = "140"> \sum \limits_{j = 0}^{t} (-1)^j {t \choose j} = 0</tex>
|definition='''Беспорядок''' (англ. ''Derangement'') — это перестановка чисел от <tex>1</tex> до <tex>n</tex>, в которой ни один элемент не стоит на своём месте.
}}
 
=== Явная формула с использованием принципа включения-исключения ===
{{Теорема
|id=идентификатор (необязательно), пример: th1.
|statement= Количество беспорядков порядка <tex>n</tex> равно субфакториалу <ref>[http://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%B1%D1%84%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D0%B8%D0%B0%D0%BB Википедия {{---}} Субфакториал]</ref> числа <tex>n</tex> (обозначение: <tex>!n</tex>) и вычисляется по формуле:
<tex dpi = "140150"> равно !n = n! - \frac{n!}{1!} + \frac{n!}{2!} - \frac{n!}{3!} + ... + (-1)^\frac{n!}\frac{n!}(-1)^{n!} = \sum_{k=0}^n(-1)^{k}\frac{n!}{k!}(-1)^{k} </tex>
|proof=
Воспользуемся принципом включения-исключения: обозначим за <tex dpi = "130">A_i</tex> — количество перестановок из <tex dpi = "130">n</tex> элементов, в каждой из которых <tex dpi = "130">i</tex>-ый элемент стоит на своём месте. Тогда по формуле включения-исключения имеем:
}}
== Рекурсивная формула = Рекурретное соотношение для нахождения количества беспорядков ===
{{Утверждение
где <tex dpi = "140"> d(1)=0 </tex>, а <tex dpi = "140"> d(2)=1 </tex>
|proof =
1) Сначала докажем Докажем второе соотношение:
Так как <tex dpi = "140"> d(n)=!n </tex>, то можно переписать эту формулу, как <tex dpi = "140"> !n=n!(n-1)+(-1)^{n} </tex>
По формуле субфакториала <tex dpi = "140"> !n=n!(\sum \limits_{k = 0}^{n-1} \frac {(-1)^{k}}{k!} + \frac {(-1)^{n}}{n!})=n!\sum \limits_{k = 0}^{n-1} \frac {(-1)^{k}}{k!}+(-1)^{n}=n \times !(n-1)+(-1)^{n}</tex>
2) Докажем первое соотношение: У нас есть <tex> n </tex> чисел и столько же мест. Мы должны найти количество способов разместить эти числа так, что ни одно из чисел не оказалось на месте с таким же номером. Предположим, что первое число оказалось на месте с номером <tex> i </tex>. Это можно сделать <tex> n-1 </tex> способами, так как первое число может оказаться на любом месте, кроме первого. Теперьесть 2 варианта, зависящие от того, используя вторую формулуокажется ли число с номером <tex> i </tex> на первом месте или нет. * Число <tex> i </tex> на первом месте. Остается <tex> n-2 </tex> мест и <tex> n-2 </tex> чисел. То есть количество беспорядков от <tex> n-2 </tex>* Число <tex> i </tex> не может оказаться на первом месте. Это эквивалентно решению задачи с <tex> n-1 </tex> местами и <tex> n-1 </tex> числами (первое число уже заняло место, докажем первуюа остальные еще нет):у каждого числа будет одно запрещенное место (у числа с номером <tex> i </tex> запрещенным будет первое место). Получается количество беспорядков от <tex> n-1 </tex>.
Так же, как Эти 2 случая не пересекаются и поэтому суммируются. В первом случае, напишем формулу через субфакториал:число <tex dpi = "140"> !n=(n-1)[!(n-1)+!(n-2)] i </tex>Заметимзанимает первое место, затем идет распределение остальных чисел, что если умножить не зависящее от первого и <tex dpi = "140"> n i </tex> на -го чисел. Во втором же случае число с номером <tex dpi = "140"> !(n-1) i </tex>, то получим часть второй формулыпопасть на первое место не может, а значит оставшиеся части формул будут равны:<tex dpi = "140"> !n=n \times !(nзаймет какое-1)-!(n-1)+(n-1) \times !(n-2) </tex>Распишем субфакториалы от <tex dpi = "140"> n-2 </tex> то другое место, и <tex dpi = "140"> n-1 </tex>: <tex dpi = "140"> (n-1) \times (n-2)!\sum \limits_{k = 0}^{n-2} \frac {(-1)^{k}}{k!}-(n-1)!\sum \limits_{k = 0}^{n-1} \frac {(-1)^{k}}{k!}=(-1)^{n} </tex>распределение остальных чисел уже будет другое.<tex dpi = "140"> (n-1)!\sum \limits_{k = 0}^{n-2} \frac {(-1)^{k}}{k!}-(n-1)!\sum \limits_{k = 0}^{n-2} \frac {(-1)^{k}}{k!}+ \frac {(-1)^{n-1}}{(n-1)!}=(-1)^{n} </tex>Субфакториалы от <tex dpi = "140"> n-2 </tex> сокращаются, остается верное равенство <tex dpi = "140"> -(-1)^{n-1}=(-1)^{n} </tex>В итоге получается необходимая формула.
}}
 
== Задача о перестановках ==
 
Сколько есть перестановок чисел от <tex> 0 </tex> до <tex> 9 </tex> таких, что первый элемент больше <tex> 1 </tex>, а последний меньше <tex> 8 </tex>?
 
Посчитаем количество "плохих" перестановок, то есть таких, у которых первый элемент <tex> \leqslant 1 </tex> (множество таких перестановок обозначим <tex> X </tex>) и/или последний <tex> \leqslant 8 </tex> (множество таких перестановок обозначим <tex> Y </tex>).
 
Тогда количество "плохих" перестановок по формуле включений-исключений равно:
 
<tex> |X|+|Y|-|X \cap Y| </tex>
 
Проведя несложные комбинаторные вычисления, получим:
 
<tex> 2 \times 9!+2 \times 9! - 2 \times 2 \times 8! </tex>
 
Отнимая это число от общего числа перестановок <tex> 10! </tex>, получим ответ.
 
== Задача о нахождении числа взаимно простых четвёрок ==
 
Дано <tex> n </tex> чисел: <tex> a_1, a_2,..., a_n </tex>. Необходимо посчитать количество способов выбрать из них четыре числа так, что они будут взаимно простыми, то есть их НОД равен единице.
 
Посчитаем число "плохих" четвёрок, то есть таких, в которых все числа делятся на число <tex> d > 1 </tex>.
 
Воспользуемся формулой включений-исключений, суммируя количество четвёрок, делящихся на <tex> d </tex> (но, возможно, делящихся и на больший делитель).
 
<tex> answer=\sum \limits_{d>1} (-1)^{deg(d)-1} \times f(d) </tex>,
 
где <tex> deg(d) </tex> — это количество простых в факторизации числа <tex> d </tex>, <tex> f(d) </tex> — количество четвёрок, делящихся на <tex> d </tex>.
 
Чтобы посчитать функцию <tex> f(d) </tex>, надо просто посчитать количество чисел, кратных <tex> d </tex>, и с помощью биномиальных коэффициентов посчитать число способов выбрать из них четвёрку.
 
Таким образом, с помощью формулы включений-исключений мы суммируем количество четвёрок, делящихся на простые числа, затем отнимаем число четвёрок, делящихся на произведение двух простых, прибавляем четвёрки, делящиеся на три простых, и т.д.
== См. также ==
1632
правки

Навигация