Преобразование Адамара — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(создание страницы)
 
м (rollbackEdits.php mass rollback)
 
(не показано 8 промежуточных версий 2 участников)
Строка 1: Строка 1:
Преобразование Адамара H (Hadamar) - [[Унитарные операторы|унитарный оператор]], действует на [[Кубит|кубит]] по правилу:<br>
+
Преобразование Адамара H (Hadamar) - [[Унитарные операторы|унитарный оператор]], действующий на [[Кубит|кубит]] по правилу:<br>
 
<tex>\hat{H}|0\rangle = \frac {1} {\sqrt2} |0\rangle + \frac {1} {\sqrt2} |1\rangle</tex><br>
 
<tex>\hat{H}|0\rangle = \frac {1} {\sqrt2} |0\rangle + \frac {1} {\sqrt2} |1\rangle</tex><br>
 
<tex>\hat{H}|1\rangle = \frac {1} {\sqrt2} |0\rangle - \frac {1} {\sqrt2} |1\rangle</tex><br>
 
<tex>\hat{H}|1\rangle = \frac {1} {\sqrt2} |0\rangle - \frac {1} {\sqrt2} |1\rangle</tex><br>
  
Матрица оператора H имеет вид:<br>
+
Для входного вектора преобразование выдаст следующее:<br>
<tex>H = \frac {1} {\sqrt2} \begin{pmatrix}
+
<tex>\hat{H}|\psi\rangle = \hat{H}(\alpha|0\rangle + \beta|1\rangle) = \frac {1} {\sqrt2} (\alpha + \beta) |0\rangle + \frac {1} {\sqrt2} (\alpha - \beta) |1\rangle</tex>
 +
 
 +
Элемент Адамара задается матрицей:<br>
 +
<tex> H = \frac {1} {\sqrt2} \begin{pmatrix}
 
1 & 1\\
 
1 & 1\\
 
1 & -1
 
1 & -1
\end{pmatrix}</tex>
+
\end{pmatrix} </tex>
  
 
Если преобразование Адамара применить два раза, то получится исходное состояние.
 
Если преобразование Адамара применить два раза, то получится исходное состояние.
Строка 13: Строка 16:
 
Если представлять состояние квантового кубита как точку на окружности, то преобразование Адамара равносильно симметричному относительно луча под углом <tex> \pi/8 </tex> отражению точки.
 
Если представлять состояние квантового кубита как точку на окружности, то преобразование Адамара равносильно симметричному относительно луча под углом <tex> \pi/8 </tex> отражению точки.
  
Так же можно описать преобразование Адамара как битовое отображение: <tex> (a, b, c) \rightarrow (a, b, c \oplus (a \and b) ) </tex>.
+
Заметим, что если применить преобразование Адамара к каждому кубиту <tex>m</tex>-кубитовой системы, то для каждого <tex> x \in \{0,1\}^{m} </tex> будет: <br><br> <tex> |x\rangle=(|0\rangle+(-1)^{x_1} |1\rangle)(|0\rangle+(-1)^{x_2 }|1\rangle)...(|0\rangle+(-1)^{x_m}|1\rangle) = \sum \limits_{y \in \{0,1\}^m } ( \prod \limits_{i : y^i = 1} (-1)^{x_i }) = \sum \limits_{y \in \{0,1\}^m } (-1)^{x \land y}|y \rangle </tex>.

Текущая версия на 19:03, 4 сентября 2022

Преобразование Адамара H (Hadamar) - унитарный оператор, действующий на кубит по правилу:
[math]\hat{H}|0\rangle = \frac {1} {\sqrt2} |0\rangle + \frac {1} {\sqrt2} |1\rangle[/math]
[math]\hat{H}|1\rangle = \frac {1} {\sqrt2} |0\rangle - \frac {1} {\sqrt2} |1\rangle[/math]

Для входного вектора преобразование выдаст следующее:
[math]\hat{H}|\psi\rangle = \hat{H}(\alpha|0\rangle + \beta|1\rangle) = \frac {1} {\sqrt2} (\alpha + \beta) |0\rangle + \frac {1} {\sqrt2} (\alpha - \beta) |1\rangle[/math]

Элемент Адамара задается матрицей:
[math] H = \frac {1} {\sqrt2} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} [/math]

Если преобразование Адамара применить два раза, то получится исходное состояние.

Если представлять состояние квантового кубита как точку на окружности, то преобразование Адамара равносильно симметричному относительно луча под углом [math] \pi/8 [/math] отражению точки.

Заметим, что если применить преобразование Адамара к каждому кубиту [math]m[/math]-кубитовой системы, то для каждого [math] x \in \{0,1\}^{m} [/math] будет:

[math] |x\rangle=(|0\rangle+(-1)^{x_1} |1\rangle)(|0\rangle+(-1)^{x_2 }|1\rangle)...(|0\rangle+(-1)^{x_m}|1\rangle) = \sum \limits_{y \in \{0,1\}^m } ( \prod \limits_{i : y^i = 1} (-1)^{x_i }) = \sum \limits_{y \in \{0,1\}^m } (-1)^{x \land y}|y \rangle [/math].