Цифровая сортировка — различия между версиями
Warrior (обсуждение | вклад) (→Алгоритм) |
м (rollbackEdits.php mass rollback) |
||
(не показано 30 промежуточных версий 9 участников) | |||
Строка 1: | Строка 1: | ||
− | '''Цифровая сортировка''' | + | '''Цифровая сортировка''' (англ. ''radix sort'') {{---}} один из алгоритмов сортировки, использующих внутреннюю структуру сортируемых объектов. |
== Алгоритм == | == Алгоритм == | ||
− | [[Файл:Цифровая_сортировка.png|thumb|right|450px|Пример цифровой сортировки трехзначных чисел]] | + | [[Файл:Цифровая_сортировка.png|thumb|right|450px|Пример цифровой сортировки трехзначных чисел, начиная с младших разрядов]] |
− | + | [[Файл:Msd-sort.png|thumb|right|450px|Пример цифровой сортировки трехзначных чисел, начиная со старших разрядов]] | |
+ | Имеем множество последовательностей одинаковой длины, состоящих из элементов, на которых задано [[Отношение порядка|отношение линейного порядка]]. Требуется отсортировать эти последовательности в лексикографическом порядке. | ||
+ | |||
+ | По аналогии с разрядами чисел будем называть элементы, из которых состоят сортируемые объекты, разрядами. Сам алгоритм состоит в последовательной сортировке объектов какой-либо устойчивой сортировкой по каждому разряду, в порядке от младшего разряда к старшему, после чего последовательности будут расположены в требуемом порядке. | ||
Примерами объектов, которые удобно разбивать на разряды и сортировать по ним, являются числа и строки. | Примерами объектов, которые удобно разбивать на разряды и сортировать по ним, являются числа и строки. | ||
− | *Для чисел уже существует понятие разряда, поэтому | + | *Для чисел уже существует понятие разряда, поэтому будем представлять числа как последовательности разрядов. Конечно, в разных системах счисления разряды одного и того же числа отличаются, поэтому перед сортировкой представим числа в удобной для нас системе счисления. |
− | * | + | *Строки представляют из себя последовательности символов, поэтому в качестве разрядов в данном случае выступают отдельные символы, сравнение которых обычно происходит по соответствующим им кодам из [[Представление символов, таблицы кодировок#Таблицы кодировок|таблицы кодировок]]. Для такого разбиения самый младший разряд {{---}} последний символ строки. |
− | Для вышеперечисленных объектов наиболее часто в качестве устойчивой сортировки применяют [[сортировка подсчетом|сортировку подсчетом]], | + | Для вышеперечисленных объектов наиболее часто в качестве устойчивой сортировки применяют [[сортировка подсчетом|сортировку подсчетом]]. |
− | === Корректность алгоритма === | + | |
+ | Такой подход к алгоритму называют '''LSD-сортировкой''' (Least Significant Digit radix sort). Существует модификация алгоритма цифровой сортировки, анализирующая значения разрядов, начиная слева, с наиболее значащих разрядов. Данный алгоритм известен, как '''MSD-сортировка''' (Most Significant Digit radix sort). | ||
+ | === Корректность алгоритма LSD-сортировки === | ||
Докажем, что данный алгоритм работает верно, используя метод математической индукции по номеру разряда. Пусть <tex> n </tex> {{---}} количество разрядов в сортируемых объектах. | Докажем, что данный алгоритм работает верно, используя метод математической индукции по номеру разряда. Пусть <tex> n </tex> {{---}} количество разрядов в сортируемых объектах. | ||
− | <b> База</b>: <tex> n = 1 </tex>. Очевидно, что алгоритм работает верно, потому что в таком случае мы просто сортируем младшие разряды какой-то заранее выбранной | + | <b> База</b>: <tex> n = 1 </tex>. Очевидно, что алгоритм работает верно, потому что в таком случае мы просто сортируем младшие разряды какой-то заранее выбранной устойчивой сортировкой. |
− | <b> Переход</b>: Пусть для <tex> n = k </tex> алгоритм правильно отсортировал | + | <b> Переход</b>: Пусть для <tex> n = k </tex> алгоритм правильно отсортировал последовательности по <tex> k </tex> младшим разрядам. Покажем, что в таком случае, при сортировке по <tex> (k + 1) </tex>-му разряду, последовательности также будут отсортированы в правильном порядке. |
− | Вспомогательная сортировка разобьет | + | Вспомогательная сортировка разобьет все объекты на группы, в которых <tex> (k + 1) </tex>-й разряд объектов одинаковый. Рассмотрим такие группы. Для сортировки по отдельным разрядам мы используем устойчивую сортировку, следовательно порядок объектов с одинаковым <tex> (k + 1) </tex>-м разрядом не изменился. Но по предположению индукции по предыдущим <tex> k </tex> разрядам последовательности были отсортированы правильно, и поэтому в каждой такой группе они будут отсортированы верно. Также верно, что сами группы находятся в правильном относительно друг друга порядке, а, следовательно, и все объекты отсортированы правильно по <tex> (k + 1) </tex>-м младшим разрядам. |
== Псевдокод == | == Псевдокод == | ||
− | В качестве примера рассмотрим сортировку чисел. Как говорилось выше, в такой ситуации в качестве | + | === LSD-сортировка === |
− | radixSort(A) | + | В качестве примера рассмотрим сортировку чисел. Как говорилось выше, в такой ситуации в качестве устойчивой сортировки применяют сортировку подсчетом, так как обычно количество различных значений разрядов не превосходит количества сортируемых элементов. Ниже приведен псевдокод цифровой сортировки, которой подается массив <tex> A </tex> размера <tex> n </tex> <tex> m </tex>-разрядных чисел . Сам по себе алгоритм представляет собой цикл по номеру разряда, на каждой итерации которого элементы массива <tex> A </tex> размещаются в нужном порядке во вспомогательном массиве <tex> B </tex>. Для подсчета количества объектов, <tex> i </tex>-й разряд которых одинаковый, а затем и для определения положения объектов в массиве <tex> B </tex> используется вспомогательный массив <tex> C </tex>. Функция <tex> \mathrm{digit(x, i)} </tex> возвращает <tex> i </tex>-й разряд числа <tex> x </tex>. Также считаем, что значения разрядов меньше <tex> k </tex>. |
− | for i = 1 to m | + | '''function''' radixSort(int[] A): |
− | for j = 0 to k - 1 | + | '''for''' i = 1 '''to''' m |
− | C[j] = 0 | + | '''for''' j = 0 '''to''' k - 1 |
− | for j = 0 to n - 1 | + | C[j] = 0 |
− | + | '''for''' j = 0 '''to''' n - 1 | |
− | for j = | + | d = digit(A[j], i) |
− | C[j] | + | C[d]++ |
− | for j = n - 1 | + | count = 0 |
− | + | '''for''' j = 0 '''to''' k - 1 | |
− | + | tmp = C[j] | |
− | A | + | C[j] = count |
+ | count += tmp | ||
+ | '''for''' j = 0 '''to''' n - 1 | ||
+ | d = digit(A[j], i) | ||
+ | B[C[d]] = A[j] | ||
+ | C[d]++ | ||
+ | A = B | ||
+ | |||
+ | === MSD-сортировка === | ||
+ | Будем считать, что у всех элементов одинаковое число разрядов. Если это не так, то положим на более старших разрядах элементы с самым маленьким значением — для чисел это <tex>0</tex>. Сначала исходный массив делится на <tex>k</tex> частей, где <tex>k</tex> — основание, выбранное для представления сортируемых объектов. Эти части принято называть "корзинами" или "карманами". В первую корзину попадают элементы, у которых старший разряд с номером <tex>d = 0</tex> имеет значение <tex>0</tex>. Во вторую корзину попадают элементы, у которых старший разряд с номером <tex>d = 0</tex> имеет значение <tex>1</tex> и так далее. Затем элементы, попавшие в разные корзины, подвергаются рекурсивному разделению по следующему разряду с номером <tex>d = 1</tex>. Рекурсивный процесс разделения продолжается, пока не будут перебраны все разряды сортируемых объектов и пока размер корзины больше единицы. То есть останавливаемся когда <tex>d > m</tex> или <tex>l \geqslant r</tex>, где m — максимальное число разрядов в сортируемых объектах, <tex>l</tex>, <tex>r</tex> — левая и правая границы отрезка массива <tex>A</tex>. | ||
+ | |||
+ | В основу распределения элементов по корзинам положен метод распределяющего подсчета элементов с одинаковыми значениями в сортируемом разряде. Для этого выполняется просмотр массива и подсчет количества элементов с различными значениями в сортируемом разряде. Эти счетчики фиксируются во вспомогательном массиве счетчиков <tex>cnt</tex>. Затем счетчики используются для вычисления размеров корзин и определения границ разделения массива. В соответствии с этими границами сортируемые объекты переносятся во вспомогательный массив <tex>c</tex>, в котором размещены корзины. | ||
+ | После того как корзины сформированы, содержимое вспомогательного массива <tex>c</tex> переносится обратно в исходный массив <tex>A</tex> и выполняется рекурсивное разделение новых частей по следующему разряду в пределах границ корзин, полученных на предыдущем шаге. | ||
+ | |||
+ | Изначально запускаем функцию так <math>\mathrm{radixSort(A, 0, A.length - 1, 1)}</math> | ||
+ | |||
+ | '''function''' radixSort(int[] A, int l, int r, int d): | ||
+ | '''if''' d > m '''or''' l >= r | ||
+ | '''return''' | ||
+ | '''for''' j = 0 '''to''' k + 1 | ||
+ | cnt[j] = 0 | ||
+ | '''for''' i = l '''to''' r | ||
+ | j = digit(A[i], d) | ||
+ | cnt[j + 1]++ | ||
+ | '''for''' j = 2 '''to''' k | ||
+ | cnt[j] += cnt[j - 1] | ||
+ | '''for''' i = l '''to''' r | ||
+ | j = digit(A[i], d) | ||
+ | c[l + cnt[j]] = A[i] | ||
+ | cnt[j]-- | ||
+ | '''for''' i = l '''to''' r | ||
+ | A[i] = c[i] | ||
+ | radixSort(A, l, l + cnt[0] - 1, d + 1) | ||
+ | '''for''' i = 1 '''to''' k | ||
+ | radixSort(A, l + cnt[i - 1], l + cnt[i] - 1, d + 1) | ||
==Сложность== | ==Сложность== | ||
− | Пусть <tex> m </tex> {{---}} количество разрядов, <tex> n </tex> {{---}} количество объектов, которые нужно отсортировать, <tex> T(n) </tex> {{---}} время работы устойчивой сортировки. Цифровая сортировка выполняет <tex> k </tex> итераций, на каждой из которой выполняется устойчивая сортировка и не более <tex> O(1) </tex> других операций. Следовательно время работы цифровой сортировки {{---}} <tex> O(k | + | ===Сложность LSD-сортировки=== |
+ | Пусть <tex> m </tex> {{---}} количество разрядов, <tex> n </tex> {{---}} количество объектов, которые нужно отсортировать, <tex> T(n) </tex> {{---}} время работы устойчивой сортировки. Цифровая сортировка выполняет <tex> k </tex> итераций, на каждой из которой выполняется устойчивая сортировка и не более <tex> O(1) </tex> других операций. Следовательно время работы цифровой сортировки {{---}} <tex> O(k T(n)) </tex>. | ||
− | Рассмотрим отдельно случай сортировки чисел. Пусть в качестве аргумента сортировке передается массив, в котором содержатся <tex> n </tex> <tex> m </tex>-значных чисел, и каждая цифра может принимать значения от <tex> 0 </tex> до <tex> k - 1 </tex>. Тогда цифровая сортировка позволяет отсортировать данный массив за время <tex> O(m | + | Рассмотрим отдельно случай сортировки чисел. Пусть в качестве аргумента сортировке передается массив, в котором содержатся <tex> n </tex> <tex> m </tex>-значных чисел, и каждая цифра может принимать значения от <tex> 0 </tex> до <tex> k - 1 </tex>. Тогда цифровая сортировка позволяет отсортировать данный массив за время <tex> O(m (n + k)) </tex>, если устойчивая сортировка имеет время работы <tex> O(n + k) </tex>. Если <tex> k </tex> небольшое, то оптимально выбирать в качестве устойчивой сортировки сортировку подсчетом. |
Если количество разрядов {{---}} константа, а <tex> k = O(n) </tex>, то сложность цифровой сортировки составляет <tex> O(n) </tex>, то есть она линейно зависит от количества сортируемых чисел. | Если количество разрядов {{---}} константа, а <tex> k = O(n) </tex>, то сложность цифровой сортировки составляет <tex> O(n) </tex>, то есть она линейно зависит от количества сортируемых чисел. | ||
+ | ===Сложность MSD-сортировки=== | ||
+ | Пусть значения разрядов меньше <tex>b</tex>, а количество разрядов {{---}} <tex>k</tex>. При сортировке массива из одинаковых элементов MSD-сортировкой на каждом шаге все элементы будут находится в неубывающей по размеру корзине, а так как цикл идет по всем элементам массива, то получим, что время работы MSD-сортировки оценивается величиной <tex>O(nk)</tex>, причем это время нельзя улучшить. Хорошим случаем для данной сортировки будет массив, при котором на каждом шаге каждая корзина будет делиться на <tex>b</tex> частей. Как только размер корзины станет равен <tex>1</tex>, сортировка перестанет рекурсивно запускаться в этой корзине. Таким образом, асимптотика будет <math>\Omega(n\log_b{n})</math>. Это хорошо тем, что не зависит от числа разрядов. | ||
− | == | + | Существует также модификация MSD-сортировки, при которой рекурсивный процесс останавливается при небольших размерах текущего кармана, и вызывается более быстрая сортировка, основанная на сравнениях (например, сортировка вставками). |
− | * | + | |
− | * | + | == См. также == |
+ | * [[Сортировка подсчетом]] | ||
+ | * [[Сортировка вставками]] | ||
− | == | + | == Источники информации == |
+ | * [[wikipedia:ru:Поразрядная сортировка|Википедия {{---}} Цифровая сортировка]] | ||
* [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2005 Визуализатор 1] — Java-аплет. | * [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2005 Визуализатор 1] — Java-аплет. | ||
* [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2001 Визуализатор 2] — Java-аплет. | * [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2001 Визуализатор 2] — Java-аплет. | ||
+ | * Дональд Кнут Искусство программирования, том 3. Сортировка и поиск | ||
+ | * Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Сортировки]] | [[Категория: Сортировки]] | ||
+ | [[Категория: Другие сортировки]] |
Текущая версия на 19:05, 4 сентября 2022
Цифровая сортировка (англ. radix sort) — один из алгоритмов сортировки, использующих внутреннюю структуру сортируемых объектов.
Содержание
Алгоритм
Имеем множество последовательностей одинаковой длины, состоящих из элементов, на которых задано отношение линейного порядка. Требуется отсортировать эти последовательности в лексикографическом порядке.
По аналогии с разрядами чисел будем называть элементы, из которых состоят сортируемые объекты, разрядами. Сам алгоритм состоит в последовательной сортировке объектов какой-либо устойчивой сортировкой по каждому разряду, в порядке от младшего разряда к старшему, после чего последовательности будут расположены в требуемом порядке.
Примерами объектов, которые удобно разбивать на разряды и сортировать по ним, являются числа и строки.
- Для чисел уже существует понятие разряда, поэтому будем представлять числа как последовательности разрядов. Конечно, в разных системах счисления разряды одного и того же числа отличаются, поэтому перед сортировкой представим числа в удобной для нас системе счисления.
- Строки представляют из себя последовательности символов, поэтому в качестве разрядов в данном случае выступают отдельные символы, сравнение которых обычно происходит по соответствующим им кодам из таблицы кодировок. Для такого разбиения самый младший разряд — последний символ строки.
Для вышеперечисленных объектов наиболее часто в качестве устойчивой сортировки применяют сортировку подсчетом.
Такой подход к алгоритму называют LSD-сортировкой (Least Significant Digit radix sort). Существует модификация алгоритма цифровой сортировки, анализирующая значения разрядов, начиная слева, с наиболее значащих разрядов. Данный алгоритм известен, как MSD-сортировка (Most Significant Digit radix sort).
Корректность алгоритма LSD-сортировки
Докажем, что данный алгоритм работает верно, используя метод математической индукции по номеру разряда. Пусть
— количество разрядов в сортируемых объектах.База:
. Очевидно, что алгоритм работает верно, потому что в таком случае мы просто сортируем младшие разряды какой-то заранее выбранной устойчивой сортировкой.Переход: Пусть для
алгоритм правильно отсортировал последовательности по младшим разрядам. Покажем, что в таком случае, при сортировке по -му разряду, последовательности также будут отсортированы в правильном порядке.Вспомогательная сортировка разобьет все объекты на группы, в которых
-й разряд объектов одинаковый. Рассмотрим такие группы. Для сортировки по отдельным разрядам мы используем устойчивую сортировку, следовательно порядок объектов с одинаковым -м разрядом не изменился. Но по предположению индукции по предыдущим разрядам последовательности были отсортированы правильно, и поэтому в каждой такой группе они будут отсортированы верно. Также верно, что сами группы находятся в правильном относительно друг друга порядке, а, следовательно, и все объекты отсортированы правильно по -м младшим разрядам.Псевдокод
LSD-сортировка
В качестве примера рассмотрим сортировку чисел. Как говорилось выше, в такой ситуации в качестве устойчивой сортировки применяют сортировку подсчетом, так как обычно количество различных значений разрядов не превосходит количества сортируемых элементов. Ниже приведен псевдокод цифровой сортировки, которой подается массив
размера -разрядных чисел . Сам по себе алгоритм представляет собой цикл по номеру разряда, на каждой итерации которого элементы массива размещаются в нужном порядке во вспомогательном массиве . Для подсчета количества объектов, -й разряд которых одинаковый, а затем и для определения положения объектов в массиве используется вспомогательный массив . Функция возвращает -й разряд числа . Также считаем, что значения разрядов меньше .function radixSort(int[] A): for i = 1 to m for j = 0 to k - 1 C[j] = 0 for j = 0 to n - 1 d = digit(A[j], i) C[d]++ count = 0 for j = 0 to k - 1 tmp = C[j] C[j] = count count += tmp for j = 0 to n - 1 d = digit(A[j], i) B[C[d]] = A[j] C[d]++ A = B
MSD-сортировка
Будем считать, что у всех элементов одинаковое число разрядов. Если это не так, то положим на более старших разрядах элементы с самым маленьким значением — для чисел это
. Сначала исходный массив делится на частей, где — основание, выбранное для представления сортируемых объектов. Эти части принято называть "корзинами" или "карманами". В первую корзину попадают элементы, у которых старший разряд с номером имеет значение . Во вторую корзину попадают элементы, у которых старший разряд с номером имеет значение и так далее. Затем элементы, попавшие в разные корзины, подвергаются рекурсивному разделению по следующему разряду с номером . Рекурсивный процесс разделения продолжается, пока не будут перебраны все разряды сортируемых объектов и пока размер корзины больше единицы. То есть останавливаемся когда или , где m — максимальное число разрядов в сортируемых объектах, , — левая и правая границы отрезка массива .В основу распределения элементов по корзинам положен метод распределяющего подсчета элементов с одинаковыми значениями в сортируемом разряде. Для этого выполняется просмотр массива и подсчет количества элементов с различными значениями в сортируемом разряде. Эти счетчики фиксируются во вспомогательном массиве счетчиков
. Затем счетчики используются для вычисления размеров корзин и определения границ разделения массива. В соответствии с этими границами сортируемые объекты переносятся во вспомогательный массив , в котором размещены корзины. После того как корзины сформированы, содержимое вспомогательного массива переносится обратно в исходный массив и выполняется рекурсивное разделение новых частей по следующему разряду в пределах границ корзин, полученных на предыдущем шаге.Изначально запускаем функцию так
function radixSort(int[] A, int l, int r, int d): if d > m or l >= r return for j = 0 to k + 1 cnt[j] = 0 for i = l to r j = digit(A[i], d) cnt[j + 1]++ for j = 2 to k cnt[j] += cnt[j - 1] for i = l to r j = digit(A[i], d) c[l + cnt[j]] = A[i] cnt[j]-- for i = l to r A[i] = c[i] radixSort(A, l, l + cnt[0] - 1, d + 1) for i = 1 to k radixSort(A, l + cnt[i - 1], l + cnt[i] - 1, d + 1)
Сложность
Сложность LSD-сортировки
Пусть
— количество разрядов, — количество объектов, которые нужно отсортировать, — время работы устойчивой сортировки. Цифровая сортировка выполняет итераций, на каждой из которой выполняется устойчивая сортировка и не более других операций. Следовательно время работы цифровой сортировки — .Рассмотрим отдельно случай сортировки чисел. Пусть в качестве аргумента сортировке передается массив, в котором содержатся
-значных чисел, и каждая цифра может принимать значения от до . Тогда цифровая сортировка позволяет отсортировать данный массив за время , если устойчивая сортировка имеет время работы . Если небольшое, то оптимально выбирать в качестве устойчивой сортировки сортировку подсчетом.Если количество разрядов — константа, а
, то сложность цифровой сортировки составляет , то есть она линейно зависит от количества сортируемых чисел.Сложность MSD-сортировки
Пусть значения разрядов меньше
, а количество разрядов — . При сортировке массива из одинаковых элементов MSD-сортировкой на каждом шаге все элементы будут находится в неубывающей по размеру корзине, а так как цикл идет по всем элементам массива, то получим, что время работы MSD-сортировки оценивается величиной , причем это время нельзя улучшить. Хорошим случаем для данной сортировки будет массив, при котором на каждом шаге каждая корзина будет делиться на частей. Как только размер корзины станет равен , сортировка перестанет рекурсивно запускаться в этой корзине. Таким образом, асимптотика будет . Это хорошо тем, что не зависит от числа разрядов.Существует также модификация MSD-сортировки, при которой рекурсивный процесс останавливается при небольших размерах текущего кармана, и вызывается более быстрая сортировка, основанная на сравнениях (например, сортировка вставками).
См. также
Источники информации
- Википедия — Цифровая сортировка
- Визуализатор 1 — Java-аплет.
- Визуализатор 2 — Java-аплет.
- Дональд Кнут Искусство программирования, том 3. Сортировка и поиск
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ