Класс P — различия между версиями
Tsar (обсуждение | вклад) (→Свойства класса P: Тривиальное доказательство первого свойства) |
м (rollbackEdits.php mass rollback) |
||
(не показана 21 промежуточная версия 5 участников) | |||
Строка 10: | Строка 10: | ||
# если на вход машине <tex>m</tex> подать слово <tex>l \in L</tex>, то она допустит его; | # если на вход машине <tex>m</tex> подать слово <tex>l \in L</tex>, то она допустит его; | ||
# если на вход машине <tex>m</tex> подать слово <tex>l \not\in L</tex>, то она не допустит его. | # если на вход машине <tex>m</tex> подать слово <tex>l \not\in L</tex>, то она не допустит его. | ||
+ | |||
+ | == Устойчивость класса P к изменению модели вычислений == | ||
+ | Машина Тьюринга может симулировать другие модели вычислений (например, языки программирования) с не более чем полиномиальным замедлением. Благодаря этому, класс <tex>\mathrm{P}</tex> на этих моделях не становится шире. | ||
+ | |||
+ | Согласно [http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%B7%D0%B8%D1%81_%D0%A7%D1%91%D1%80%D1%87%D0%B0_%E2%80%94_%D0%A2%D1%8C%D1%8E%D1%80%D0%B8%D0%BD%D0%B3%D0%B0 тезису Чёрча-Тьюринга], любой физически реализуемый алгоритм можно реализовать на машине Тьюринга. Так что класс <tex>\mathrm{P}</tex> устойчив и в обратном преобразовании модели вычислений. | ||
== Свойства класса P == | == Свойства класса P == | ||
− | {{ | + | {{Теорема |
|statement = | |statement = | ||
Класс <tex>\mathrm{P}</tex> замкнут относительно [[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|сведения по Карпу]]. <tex>L \in \mathrm{P}, M \le L \Rightarrow M \in \mathrm{P}</tex>. | Класс <tex>\mathrm{P}</tex> замкнут относительно [[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|сведения по Карпу]]. <tex>L \in \mathrm{P}, M \le L \Rightarrow M \in \mathrm{P}</tex>. | ||
|proof = | |proof = | ||
Пусть <tex>p</tex> {{---}} разрешитель <tex>L</tex>, работающий за полиномиальное время. | Пусть <tex>p</tex> {{---}} разрешитель <tex>L</tex>, работающий за полиномиальное время. | ||
− | <tex> (M \leq L) \overset{\underset{\mathrm{def}}{}}{\iff} ( \exists f \in \widetilde{P} : w \in M \Leftrightarrow f(w) \in L ) </tex>. | + | <tex> (M \leq L) \overset{\underset{\mathrm{def}}{}}{\iff} ( \exists f \in \mathrm{\widetilde{P}} : w \in M \Leftrightarrow f(w) \in L ) </tex>. |
Построим разрешитель <tex>q</tex> для языка <tex>M</tex>. | Построим разрешитель <tex>q</tex> для языка <tex>M</tex>. | ||
<tex>q(w):</tex> | <tex>q(w):</tex> | ||
Строка 27: | Строка 32: | ||
− | {{ | + | {{Теорема |
|statement = | |statement = | ||
− | <tex> | + | <tex>D \subseteq \mathrm{P} \Rightarrow \mathrm{P}=\mathrm{P}^D</tex>. В частности, из этого следует, что <tex>\mathrm{P}=\mathrm{P^P}</tex>. |
|proof = | |proof = | ||
− | ... | + | Понятно, что <tex>\mathrm{P} \subset \mathrm{P}^D</tex>. Докажем, что <tex>\mathrm{P}^D \subset \mathrm{P}</tex>. |
+ | |||
+ | <tex>L \in \mathrm{P}^D \Rightarrow \exists A \in D: L \in \mathrm{P}^A</tex>. | ||
+ | |||
+ | Пусть <tex>p</tex> {{---}} разрешитель <tex>L</tex>, работающий за полиномиальное время <tex>f(n)</tex> и использующий оракул языка <tex>A</tex>. | ||
+ | Пусть <tex>q</tex> {{---}} разрешитель <tex>A</tex>, работающий за полиномиальное время <tex>g(n)</tex>. | ||
+ | Представим себе разрешитель <tex>L</tex>, работающий как <tex>p</tex>, но использующий <tex>q</tex> вместо оракула <tex>A</tex>. Его время работы ограничено сверху значением <tex>f(n) + \sum\limits_{i=1}^{f(n)} g(f(n)) = f(n) + f(n) g(f(n))</tex>, что является полиномом (обращений к <tex>q</tex> максимум <tex>f(n)</tex>; на вход для <tex>q</tex> можем подать максимум <tex>f(n)</tex> данных, так как больше сгенерировать бы не успели). Значит, <tex>L \in \mathrm{P}</tex>. | ||
}} | }} | ||
− | {{ | + | {{Теорема |
|statement = | |statement = | ||
Класс <tex>\mathrm{P}</tex> замкнут относительно операций объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если <tex>L_1, L_2 \in \mathrm{P}</tex>, то: <tex>L_1 \cup L_2 \in \mathrm{P}</tex>, <tex>L_1 \cap L_2 \in \mathrm{P}</tex>, <tex>L_1 L_2 \in \mathrm{P}</tex>, <tex>L_1^* \in \mathrm{P}</tex> и <tex>\overline{L_1} \in \mathrm{P}</tex>. | Класс <tex>\mathrm{P}</tex> замкнут относительно операций объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если <tex>L_1, L_2 \in \mathrm{P}</tex>, то: <tex>L_1 \cup L_2 \in \mathrm{P}</tex>, <tex>L_1 \cap L_2 \in \mathrm{P}</tex>, <tex>L_1 L_2 \in \mathrm{P}</tex>, <tex>L_1^* \in \mathrm{P}</tex> и <tex>\overline{L_1} \in \mathrm{P}</tex>. | ||
Строка 56: | Строка 67: | ||
}} | }} | ||
− | == | + | == Примеры задач и языков из P == |
+ | Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей: | ||
+ | * определение связности графов; | ||
+ | * вычисление наибольшего общего делителя; | ||
+ | * задача линейного программирования; | ||
+ | * проверка простоты числа.<ref>[http://www.cse.iitk.ac.in/~manindra/algebra/primality_v6.pdf M.Argawal, N.Kayal, N.Saxena, "Primes is in P"]</ref> | ||
+ | |||
+ | Но существуют задачи не из <tex>\mathrm{P}</tex>, так как из [[теорема о временной иерархии|теоремы о временной иерархии]] следует, что <tex>\exists L \in \mathrm{EXP}\setminus\mathrm{P}</tex>. | ||
+ | |||
+ | |||
{{Теорема | {{Теорема | ||
|statement = | |statement = | ||
Строка 62: | Строка 82: | ||
|proof = | |proof = | ||
<tex>\mathrm{Reg} \subset \mathrm{TS}(n, 1) \subset \mathrm{P}</tex> | <tex>\mathrm{Reg} \subset \mathrm{TS}(n, 1) \subset \mathrm{P}</tex> | ||
− | |||
}} | }} | ||
− | + | ||
{{Теорема | {{Теорема | ||
|statement = | |statement = | ||
Строка 74: | Строка 93: | ||
}} | }} | ||
− | == | + | == P-полные задачи == |
− | + | Говоря про <tex>\mathrm{P}</tex>-[[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи#Определения трудных и полных задач|полноту]], мы, как правило, подразумеваем <tex>\mathrm{P}</tex>-полноту относительно <tex>\widetilde{\mathrm{L}}</tex>-сведения.<ref>[[Классы L, NL, coNL. NL-полнота задачи о достижимости]]</ref> | |
− | |||
− | |||
− | |||
− | |||
+ | {{Определение | ||
+ | |definition= | ||
+ | <tex>CIRCVAL = \{\langle C, x_1,\ldots,x_n\rangle \bigm| C(x_1,\ldots,x_n) = 1\}</tex>, где <tex>C</tex> это логическая схема. | ||
+ | }} | ||
− | + | {{Теорема | |
+ | |statement = | ||
+ | <tex>CIRCVAL</tex> {{---}} <tex>\mathrm{P}</tex>-полная задача.<ref>[http://www.math.sc.edu/~cooper/math778C/abct.pdf S.Arora, B.Barak, "Computational Complexity: A Modern Approach"]</ref> | ||
+ | }} | ||
== Ссылки == | == Ссылки == | ||
<references/> | <references/> | ||
− | [[Категория: | + | [[Категория: Классы сложности]] |
Текущая версия на 19:18, 4 сентября 2022
Содержание
Определение
Определение: |
Класс [1]. | — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть:
Итого, язык лежит в классе тогда и только тогда, когда существует такая детерминированная машина Тьюринга , что:
- завершает свою работу за полиномиальное время на любых входных данных;
- если на вход машине подать слово , то она допустит его;
- если на вход машине подать слово , то она не допустит его.
Устойчивость класса P к изменению модели вычислений
Машина Тьюринга может симулировать другие модели вычислений (например, языки программирования) с не более чем полиномиальным замедлением. Благодаря этому, класс
на этих моделях не становится шире.Согласно тезису Чёрча-Тьюринга, любой физически реализуемый алгоритм можно реализовать на машине Тьюринга. Так что класс устойчив и в обратном преобразовании модели вычислений.
Свойства класса P
Теорема: |
Класс сведения по Карпу. . замкнут относительно |
Доказательство: |
Пусть — разрешитель , работающий за полиномиальное время. . Построим разрешитель для языка .Разрешитель if ( ) return true return false работает за полиномиальное время, так как композиция полиномов есть полином. |
Теорема: |
. В частности, из этого следует, что . |
Доказательство: |
Понятно, что . Докажем, что .. Пусть Представим себе разрешитель — разрешитель , работающий за полиномиальное время и использующий оракул языка . Пусть — разрешитель , работающий за полиномиальное время . , работающий как , но использующий вместо оракула . Его время работы ограничено сверху значением , что является полиномом (обращений к максимум ; на вход для можем подать максимум данных, так как больше сгенерировать бы не успели). Значит, . |
Теорема: |
Класс замкнут относительно операций объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если , то: , , , и . |
Доказательство: |
Докажем замкнутость замыкания Клини. Остальные доказательства строятся аналогично. Пусть — разрешитель , работающий за полиномиальное время. Построим разрешитель для языка .Худшая оценка времени работы разрешителя //позиции, где могут заканчиваться слова, принадлежащие for ( ) for ( ) if ( ) { if ( ) return true } return false равна , так как в множестве может быть максимум элементов, значит итерироваться по множеству можно за , если реализовать его на основе битового массива, например; при этом операция добавления элемента в множество будет работать за . Итого, разрешитель работает за полиномиальное время (так как произведение полиномов есть полином). Значит . |
Примеры задач и языков из P
Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей:
- определение связности графов;
- вычисление наибольшего общего делителя;
- задача линейного программирования;
- проверка простоты числа.[2]
Но существуют задачи не из теоремы о временной иерархии следует, что .
, так как из
Теорема: |
Класс регулярных языков входит в класс , то есть: . |
Доказательство: |
Теорема: |
Класс контекстно-свободных языков входит в класс , то есть: . |
Доказательство: |
Первое включение выполняется благодаря существованию алгоритма Эрли. |
P-полные задачи
Говоря про полноту, мы, как правило, подразумеваем -полноту относительно -сведения.[3]
-
Определение: |
, где это логическая схема. |
Теорема: |
— -полная задача. |