Специальные формы КНФ — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 100 промежуточных версий 17 участников)
Строка 1: Строка 1:
Существует два способа представления формулы,заданной в конъюнктивной нормальной форме(КНФ,Conjunctive Normal Form,CNF),т.е имеющей вид конъюнкции выражений в скобках(clauses),каждое из которых представляет собой дизъюнкцию одного или нескольких литералов:
+
__TOC__
  
+
Рассмотрим две формы, с помощью которых можно представить формулы, заданные в [[Определение булевой функции#Представление булевых функций|конъюнктивной нормальной форме]], то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов. Для двух этих форм существует алгоритм, который может за полиномиальное время проверить, существует ли набор аргументов, на которых данная функция будет принимать значение <tex>1</tex>, в то время, как для обычной функции, не представленной данной формой, эта задача является [[Примеры NP-полных языков. Теорема Кука|<tex>\mathrm{NP}</tex>-полной]]. Этот факт интересен потому, что, имея большое количество функций, которые можно свести к форме Хорна или Крома, мы сможем гарантированно вычислять необходимое нам условие за полиномиальное время. Поэтому с помощью применения данных форм мы сможем решать очень быстро целый класс задач, например, задачи на графах, которые, как известно, имеют большое практическое применение.
*[[#КНФ в форме Крома|КНФ в форме Крома(2-КНФ,2-Sat,2-CNF)]]
 
  
*[[#КНФ в форме Хорна|КНФ в форме Хорна(Horn clause)]]
+
== КНФ в форме Крома ==
 +
{{Определение
 +
|definition=
 +
'''Конъюнктивная нормальная форма '''(англ. ''conjunctive normal form, CNF'') '''в форме Крома, 2-КНФ<ref>[https://en.wikipedia.org/wiki/2-satisfiability Wikipedia {{---}} 2-satisfiability]</ref>''' (англ. ''2-CNF'') {{---}} конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию ровно двух литералов.}}
  
 +
'''Пример :'''
  
 +
<tex>(x_1\vee\overline x_2)  \wedge (\overline x_1 \vee x_3 ) \wedge (\overline x_3 \vee x_2 ) \wedge (\overline x_1 \vee \overline x_2) \wedge\ldots  </tex>
  
== КНФ в форме Крома ==
+
{{Утверждение
{{Определение
+
|statement= Существует алгоритм, который за полиномиальное время проверяет, что формулу, заданную в форме Крома, можно удовлетворить.}}
|definition=
+
{{main|2SAT}}
'''Конъюнктивной нормальной формой(КНФ) в форме Крома''' - это конъюнкция выражений в скобках,каждое из которых представляет собой дизъюнкцию нескольких литералов,количество которых не превышает 2х. Эта же такая форма называется 2-CNF (2-conjunctive normal form).}}
 
  
'''Пример:'''
 
<math>(A \or \neg B) \and (\neg A \or C ) \and (\neg C \or B ) \and (\neg A \or \neg C ) \cdots </math>
 
  
В такой форме можно представить задачу 2-SAT (2-satisfiability,задача распределения значений булевым переменным таким образом, чтобы они удовлетворяли всем наложенным ограничениям).Алгоритм для решения 2-SAT может быть применим во всех задачах, где есть набор величин, каждая из которых может принимать 2 возможных значения, и есть связи между этими величинами.
+
{{Утверждение
 +
|statement=Функцию <tex>F</tex> можно задать в форме Крома <tex> \iff </tex> выполнено следующее следствие : <tex> F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=F(z_1, \ldots, z_n)=1 \Rightarrow</tex>  <tex>F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, \ldots, \langle x_n, y_n, z_n \rangle)</tex>
 +
}}
  
 
== КНФ в форме Хорна ==
 
== КНФ в форме Хорна ==
 +
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Конъюнктивной нормальной формой(КНФ) в форме Хорна''' - это конъюнкция выражений в скобках,каждое из которых представляет собой дизъюнкцию литералов(literal,переменная или ее отрицание),в которой присутствует не более одного неотрицательного литерала.}}
+
'''Конъюнктивная нормальная форма '''(англ. ''conjunctive normal form, CNF'') '''в форме Хорна<ref>[https://en.wikipedia.org/wiki/Horn_clause Wikipedia {{---}} Horn clause]</ref>''' (англ. ''Horn clause'')  {{---}} это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию литералов, в которой присутствует не более одного литерала без отрицания.}}
  
 
'''Пример:'''
 
'''Пример:'''
<math> (\neg A \or \neg B \vee \cdots \or \neg C ) \and (A  \or \neg B  \vee \cdots \or \neg C)</math>
 
  
Каждая скобка состоит из,так называемых дизъюнктов Хорна.Дизъюнкт с ровно одним положительным литералом называется ''определенным'' дизъюнктом.Дизъюнкт без положительных литералов иногда называется ''целью'' или ''запросом''(конкретно в логическом программировании).
+
<tex> (\overline x_1 \vee \overline x_2 \vee \ldots \vee \overline x_n ) \wedge (x_1  \vee \overline x_2  \vee \ldots \vee \overline x_n)\wedge \ldots</tex>
 +
 
 +
Каждая скобка представляет собой Дизъюнкт Хорна<ref>[https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%B7%D1%8A%D1%8E%D0%BD%D0%BA%D1%82_%D0%A5%D0%BE%D1%80%D0%BD%D0%B0 Википедия {{---}} Дизъюнкт Хорна]</ref>.
 +
 
 +
{{Утверждение
 +
|statement= Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна, можно удовлетворить.
 +
|proof= Далее будет приведено доказательство, предлагающее алгоритм решения.
 +
 
 +
*'''Шаг 1. Одиночное вхождение переменных.''' Найдем в данной формуле одиночно стоящие переменные. Например, для формулы <tex> x \wedge (x \vee \neg y \vee \neg z) </tex>  такой переменной является <tex>x</tex>.       
 +
*# Присутствуют одиночно стоящие переменные.
 +
*#:Присвоим всем таким переменным значение <tex> 1 </tex>, если переменная входит без отрицания и <tex>0</tex> иначе, так как в конъюнкции они должны дать <tex>1</tex>. Заметим, что если какая-либо скобка после этого обратилась в <tex> 0 </tex>, то решения не существует.
 +
*# Отсутствуют одиночно стоящие переменные.
 +
*#:Всем переменным надо присвоить значение <tex> 0 </tex> и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение <tex>0</tex> мы получим <tex> 1</tex> в результате дизъюнкции. В итоге мы получим выражение вида: <tex>1\wedge 1 \wedge \ldots \wedge 1</tex>, что в результате даст нам <tex> 1</tex>. В таком случае дальнейшие шаги выполнять не нужно.
 +
 
 +
*'''Шаг 2.'''  
 +
*:Опустим одиночно стоящие переменные и скобки, в которых значение стало равным <tex>1</tex>. Перейдём к <tex>1</tex> шагу алгоритма. По определению формы Хорна, в каждой из скобок, где мы опустили переменную, не больше <tex>1</tex> переменной без отрицания. Либо какая-то из переменных внутри скобки будет иметь отрицание, т.е. при подстановке <tex>0</tex> станет равна <tex>1</tex>, либо мы рассмотрим переменную без отрицания как отдельно стоящую переменную. Значит <tex>1</tex> шаг алгоритма выполнится верно. Будем проделывать алгоритм, начиная сначала, пока <tex>1</tex> шаг не найдёт ответ.
 +
 
 +
Обозначим за <tex>N</tex> число вхождений переменных в формулу.
 +
Итерация состоит из шагов, каждый из которых выполняется за <tex>O(N)</tex>. Всего итераций будет не больше <tex>N</tex>, так как если первый шаг не завершил алгоритм, то уменьшил размер формулы на одно вхождение. Итого, асимптотика алгоритма составляет <tex>O(N^2)</tex>.
 +
}}
 +
{{Утверждение
 +
|statement=Функцию <tex>F</tex> можно задать в форме Хорна <tex>  \iff </tex> выполнено следующее следствие:<tex> F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=1  \Rightarrow  F(x_1 \wedge y_1, x_2  \wedge  y_2, \ldots, x_n \wedge y_n)</tex>
 +
}}
  
Дизъюнкты Хорна могут быть пропозициональными формулами, либо формулами первого порядка, в зависимости от того, рассматриваются ли пропозициональные литералы(значением которых может быть логическое высказывание) или литералы первого порядка.
+
== См.также ==
 +
* [[СКНФ]]
 +
* [[2SAT]]
 +
* [[ДНФ]]
  
Пропозициональные дизъюнкты Хорна также представляют интерес для теории сложности вычислений, где задача поиска множества истинностных значений, выполняющих КНФ в форме Хорна, является P-полной.Задача выполнимости дизъюнктов Хорна первого порядка не разрешима.
+
==Примечания==
  
Любую формулу можно представить в виде КНФ в форме Хорна.Для этого любую формулу необходимо преобразовать в КНФ(конъюнкцию элементарных дизъюнкций) и далее каждую дизъюнкцию представить в форме Хорна.
+
<references />
  
'''Пример:'''
+
==Источники информации==
+
*[https://en.wikipedia.org/wiki/Conjunctive_normal_form Wikipedia {{---}} CNF]
Пусть нам дано выражение ( ¬ A v (B ^ D) ≡ B → C )
 
Тогда:  
 
¬ A v (B ^ D) ≡(¬A v B) ^ (¬A v D)
 
  
B→C ≡¬B v C
 
  
(¬A v B) ^ (¬A v D) ≡ (¬B v C)    - в форме Хорна.
+
[[Категория: Дискретная математика и алгоритмы]]
  
== См.также ==
+
[[Категория: Булевы функции ]]
[[СКНФ]]
 

Текущая версия на 19:39, 4 сентября 2022

Рассмотрим две формы, с помощью которых можно представить формулы, заданные в конъюнктивной нормальной форме, то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов. Для двух этих форм существует алгоритм, который может за полиномиальное время проверить, существует ли набор аргументов, на которых данная функция будет принимать значение [math]1[/math], в то время, как для обычной функции, не представленной данной формой, эта задача является [math]\mathrm{NP}[/math]-полной. Этот факт интересен потому, что, имея большое количество функций, которые можно свести к форме Хорна или Крома, мы сможем гарантированно вычислять необходимое нам условие за полиномиальное время. Поэтому с помощью применения данных форм мы сможем решать очень быстро целый класс задач, например, задачи на графах, которые, как известно, имеют большое практическое применение.

КНФ в форме Крома

Определение:
Конъюнктивная нормальная форма (англ. conjunctive normal form, CNF) в форме Крома, 2-КНФ[1] (англ. 2-CNF) — конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию ровно двух литералов.


Пример :

[math](x_1\vee\overline x_2) \wedge (\overline x_1 \vee x_3 ) \wedge (\overline x_3 \vee x_2 ) \wedge (\overline x_1 \vee \overline x_2) \wedge\ldots [/math]

Утверждение:
Существует алгоритм, который за полиномиальное время проверяет, что формулу, заданную в форме Крома, можно удовлетворить.
Основная статья: 2SAT


Утверждение:
Функцию [math]F[/math] можно задать в форме Крома [math] \iff [/math] выполнено следующее следствие : [math] F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=F(z_1, \ldots, z_n)=1 \Rightarrow[/math] [math]F(\langle x_1, y_1, z_1 \rangle, \langle x_2, y_2, z_2 \rangle, \ldots, \langle x_n, y_n, z_n \rangle)[/math]

КНФ в форме Хорна

Определение:
Конъюнктивная нормальная форма (англ. conjunctive normal form, CNF) в форме Хорна[2] (англ. Horn clause) — это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию литералов, в которой присутствует не более одного литерала без отрицания.


Пример:

[math] (\overline x_1 \vee \overline x_2 \vee \ldots \vee \overline x_n ) \wedge (x_1 \vee \overline x_2 \vee \ldots \vee \overline x_n)\wedge \ldots[/math]

Каждая скобка представляет собой Дизъюнкт Хорна[3].

Утверждение:
Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна, можно удовлетворить.
[math]\triangleright[/math]

Далее будет приведено доказательство, предлагающее алгоритм решения.

  • Шаг 1. Одиночное вхождение переменных. Найдем в данной формуле одиночно стоящие переменные. Например, для формулы [math] x \wedge (x \vee \neg y \vee \neg z) [/math] такой переменной является [math]x[/math].
    1. Присутствуют одиночно стоящие переменные.
      Присвоим всем таким переменным значение [math] 1 [/math], если переменная входит без отрицания и [math]0[/math] иначе, так как в конъюнкции они должны дать [math]1[/math]. Заметим, что если какая-либо скобка после этого обратилась в [math] 0 [/math], то решения не существует.
    2. Отсутствуют одиночно стоящие переменные.
      Всем переменным надо присвоить значение [math] 0 [/math] и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение [math]0[/math] мы получим [math] 1[/math] в результате дизъюнкции. В итоге мы получим выражение вида: [math]1\wedge 1 \wedge \ldots \wedge 1[/math], что в результате даст нам [math] 1[/math]. В таком случае дальнейшие шаги выполнять не нужно.
  • Шаг 2.
    Опустим одиночно стоящие переменные и скобки, в которых значение стало равным [math]1[/math]. Перейдём к [math]1[/math] шагу алгоритма. По определению формы Хорна, в каждой из скобок, где мы опустили переменную, не больше [math]1[/math] переменной без отрицания. Либо какая-то из переменных внутри скобки будет иметь отрицание, т.е. при подстановке [math]0[/math] станет равна [math]1[/math], либо мы рассмотрим переменную без отрицания как отдельно стоящую переменную. Значит [math]1[/math] шаг алгоритма выполнится верно. Будем проделывать алгоритм, начиная сначала, пока [math]1[/math] шаг не найдёт ответ.

Обозначим за [math]N[/math] число вхождений переменных в формулу.

Итерация состоит из шагов, каждый из которых выполняется за [math]O(N)[/math]. Всего итераций будет не больше [math]N[/math], так как если первый шаг не завершил алгоритм, то уменьшил размер формулы на одно вхождение. Итого, асимптотика алгоритма составляет [math]O(N^2)[/math].
[math]\triangleleft[/math]
Утверждение:
Функцию [math]F[/math] можно задать в форме Хорна [math] \iff [/math] выполнено следующее следствие:[math] F(x_1, \ldots, x_n)=F(y_1, \ldots, y_n)=1 \Rightarrow F(x_1 \wedge y_1, x_2 \wedge y_2, \ldots, x_n \wedge y_n)[/math]

См.также

Примечания

Источники информации