Алгоритм Ландау-Вишкина (k несовпадений) — различия между версиями
Margarita (обсуждение | вклад) (→Оценка сложности) |
м (rollbackEdits.php mass rollback) |
||
(не показано 7 промежуточных версий 5 участников) | |||
Строка 11: | Строка 11: | ||
Заметим, если <tex>tm[i][k+1] = m+1</tex>, то подстрока <tex>y[i+1...i+m]</tex> отличается от образца <tex>x</tex> не более, чем на <tex>k</tex> символов, и, таким образом, является решением задачи. | Заметим, если <tex>tm[i][k+1] = m+1</tex>, то подстрока <tex>y[i+1...i+m]</tex> отличается от образца <tex>x</tex> не более, чем на <tex>k</tex> символов, и, таким образом, является решением задачи. | ||
− | Затем образец сканируется параллельно с текстом слева | + | Затем образец сканируется параллельно с текстом слева направо по одному символу за раз. На итерации <tex>i</tex> с образцом сравнивается подстрока <tex>y[i+1...i+m]</tex>. Пусть <tex>j</tex> {{---}} это самая правая позиция в тексте, достигнутая за предыдущие итерации, то есть <tex>j</tex> является максимальным из чисел <tex>r+tm[r][k + 1]</tex>, где <tex>0 \leqslant r < i</tex>. Если <tex>i < j</tex>, в <tex>b</tex> присваивается результат работы <tex>\mathrm{merge}</tex>, которая находит количество несовпадений между <tex>x[1...j-i]</tex> и <tex>y[i+1...j]</tex>. Если <tex>b</tex> не превышает <tex>k</tex>, вызывается процедура <tex>\mathrm{extend}</tex>, которая сравнивает подстроки <tex>y[j + 1...i + m]</tex> и <tex>x[j - i + 1...m]</tex>, где изменяется таблица текстовых несовпадений. Переменная <tex>r</tex> будет рассмотрена ниже. |
{| border="0" | {| border="0" | ||
Строка 37: | Строка 37: | ||
[[Файл:algLandauVishkin2.png|thumb|380px|right| Синие подстроки сравниваются в процедуре <tex>\mathrm{extend}</tex>. <tex>w < k + 1</tex>]] | [[Файл:algLandauVishkin2.png|thumb|380px|right| Синие подстроки сравниваются в процедуре <tex>\mathrm{extend}</tex>. <tex>w < k + 1</tex>]] | ||
− | Рассмотрим процедуру <tex>\mathrm{extend}</tex> подробнее. Она сравнивает подстроки <tex>y[j + 1...i + m]</tex> и <tex>x[j - i + 1...m]</tex>, в случае несовпадения <tex>b</tex> увеличивается и таблица текстовых несовпадений обновляется. Это происходит пока либо не будет найдено <tex>k + 1</tex> несовпадений (учитывая несовпадения, которые были найдены раньше на <tex>i</tex>-ой итерации), либо не будет достигнуто <tex>y[i+m]</tex> с не больше чем <tex>k</tex> несовпадениями, то есть найдено вхождение образца, начинающееся с <tex>y[i+1]</tex>. | + | Рассмотрим процедуру <tex>\mathrm{extend}</tex> подробнее. Она сравнивает подстроки <tex>y[j + 1...i + m]</tex> и <tex>x[j - i + 1...m]</tex>, в случае несовпадения <tex>b</tex> увеличивается, и таблица текстовых несовпадений обновляется. Это происходит пока либо не будет найдено <tex>k + 1</tex> несовпадений (учитывая несовпадения, которые были найдены раньше на <tex>i</tex>-ой итерации), либо не будет достигнуто <tex>y[i+m]</tex> с не больше чем <tex>k</tex> несовпадениями, то есть найдено вхождение образца, начинающееся с <tex>y[i+1]</tex>. |
{| border="0" | {| border="0" | ||
Строка 100: | Строка 100: | ||
v = q | v = q | ||
'''while''' (b < k + 1) '''and''' (v < k + 2) '''and''' (i + pm[i - r][u] < j '''or''' tm[r][v] <tex>\neq</tex> m + 1) | '''while''' (b < k + 1) '''and''' (v < k + 2) '''and''' (i + pm[i - r][u] < j '''or''' tm[r][v] <tex>\neq</tex> m + 1) | ||
− | '''if''' i + pm[i - r][u] > r + tm[r][v] <font color=green> // Случай 2, условие A </font> | + | '''if''' i + pm[i - r][u] > r + tm[r][v] <font color=green> // Случай 2, условие A </font> |
b++ | b++ | ||
tm[i][b] = tm[r][v] - (i - r) | tm[i][b] = tm[r][v] - (i - r) | ||
Строка 108: | Строка 108: | ||
tm[i][b] = pm[i - r][u] | tm[i][b] = pm[i - r][u] | ||
u++ | u++ | ||
− | '''else''' '''if''' i + pm[i - r][u] = r + tm[r][v] <font color=green> // Случай 3 </font> | + | '''else''' '''if''' i + pm[i - r][u] = r + tm[r][v] <font color=green>// Случай 3 </font> |
'''if''' x[pm[i - r][u]] <tex>\neq</tex> y[i + pm[i - r][u]] | '''if''' x[pm[i - r][u]] <tex>\neq</tex> y[i + pm[i - r][u]] | ||
b++ | b++ | ||
Строка 157: | Строка 157: | ||
{| class="wikitable" cellpadding="4" border="1" style="border-collapse: collapse; text-align: center;" | {| class="wikitable" cellpadding="4" border="1" style="border-collapse: collapse; text-align: center;" | ||
|- | |- | ||
− | | tm || '''1''' || '''2''' || '''3''' || x[1 | + | | tm || '''1''' || '''2''' || '''3''' || x[1 <tex>\ldots</tex> m] || y[i+1 <tex>\ldots</tex> i+m] |
|- | |- | ||
| '''0''' || 2 || 3 || 4 || '''t'''ram || '''t'''het | | '''0''' || 2 || 3 || 4 || '''t'''ram || '''t'''het | ||
Строка 183: | Строка 183: | ||
{| class="wikitable" cellpadding="4" border="1" style="border-collapse: collapse; text-align: center;" | {| class="wikitable" cellpadding="4" border="1" style="border-collapse: collapse; text-align: center;" | ||
|- | |- | ||
− | | pm || '''1''' || '''2''' || '''3''' || '''4''' || '''5''' || x[1 | + | | pm || '''1''' || '''2''' || '''3''' || '''4''' || '''5''' || x[1 <tex>\ldots</tex> m-i] || x[i+1 <tex>\ldots</tex> m] |
|- | |- | ||
| '''1''' || 1 || 2 || 3 || 5 || 5 || tra || ram | | '''1''' || 1 || 2 || 3 || 5 || 5 || tra || ram | ||
Строка 202: | Строка 202: | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Поиск подстроки в строке]] | [[Категория: Поиск подстроки в строке]] | ||
+ | [[Категория: Нечёткий поиск]] |
Текущая версия на 19:37, 4 сентября 2022
Постановка задачи: дано число
текст и образец , . Требуется найти все подстроки текста длины , с не более чем несовпадающими символами с образцом. Эту задачу решает алгоритм Ландау-Вишкина (k несовпадений) (англ.Landau-Vishkin Algorithm)Алгоритм
Идея
При анализе используется двумерный массив несовпадений текста пример).
, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его -й строке содержатся позиции в первых несовпадений между строками и . Таким образом, если , то , и это -е несовпадение между и , считая слева направо. Если число несовпадений с подстрокой меньше , то, начиная с , элементы -й строки равны значению по умолчанию . (См.Заметим, если
, то подстрока отличается от образца не более, чем на символов, и, таким образом, является решением задачи.Затем образец сканируется параллельно с текстом слева направо по одному символу за раз. На итерации
с образцом сравнивается подстрока . Пусть — это самая правая позиция в тексте, достигнутая за предыдущие итерации, то есть является максимальным из чисел , где . Если , в присваивается результат работы , которая находит количество несовпадений между и . Если не превышает , вызывается процедура , которая сравнивает подстроки и , где изменяется таблица текстовых несовпадений. Переменная будет рассмотрена ниже.
int[][] algorithmLandauViskin(y : string, x : string) n = y.length m = x.length tm[0...n - m][1...k + 1] = m + 1 // инициализация r = 0 j = 0 for i = 0 to n - m b = 0 if i < j b = merge(i, r, j) if b < k + 1 r = i extend(i, j, b) return tm
|
Процедура extend
Рассмотрим процедуру
подробнее. Она сравнивает подстроки и , в случае несовпадения увеличивается, и таблица текстовых несовпадений обновляется. Это происходит пока либо не будет найдено несовпадений (учитывая несовпадения, которые были найдены раньше на -ой итерации), либо не будет достигнуто с не больше чем несовпадениями, то есть найдено вхождение образца, начинающееся с .
void extend(i : int, j : int, b : int)
while (b < k + 1) and (j - i < m)
j++
if y[j]
x[j-1]
b++
tm[i][b] = j - i
|
Процедура merge
Рассмотрим процедуру
подробнее. Она находит количество несовпадений между и и устанавливает равным найденному числу, при этом используется полученная ранее информация. Введем — это строка таблицы несовпадений, в которой есть информация о несовпадениях, полученных при совмещении начала образца и . Текущий номер самой правой из проверенных на настоящий момент позиции текста равен . Поэтому при обработки подстроки начинающейся с , можно учитывать информацию в -ой строке , которая содержит информацию о сопоставлении образца с . Подходящими значениями из таблицы несовпадений являются, таким образом, , где — это наименьшее из целых чисел, для которых . Однако, следует учитывать тот факт, что эти несовпадения соответствуют началу образца, который был выровнен с , в то время как текущая позиция образца выровнена с — разница в мест.Также в алгоритме используется двумерный массив несовпадений образца
, генерируемой на стадии предварительной обработки образца. В нем содержатся позиции несовпадения образца с самим собой при различных сдвигах, аналогично , то ест—ь в -ой строке содержатся позиции внутри первых несовпадений между подстроками и . Таким образом, если , то , и это -е несовпадение между и слева направо. Если число несовпадений между этими строками меньше , то, начиная с , элементы -й строки равны , значению по умолчанию. Построение будет подробнее рассмотрено позднее.Таким образом, для
интерес представляет строка таблицы несовпадений образца, причем используются значения , где — самое правое несовпадение в , такое, что , так как требуются только несовпадения в подстроке .Чтобы использовать упомянутую информацию в процедуре
, рассмотрим в тексте позицию , находящуюся в диапазоне, . Рассмотрим следующие условия для позиции :Условие A: когда символы
и совмещены, позиция в тексте соответствует предварительно выявленному несовпадению между образцом и текстом, то есть , и это несовпадение номер , где , то есть .Условие B: для двух копий образца, со сдвигом относительно друг друга
, совмещенных с текстом так, что их начальные символы лежат, соответственно, над и , позиция соответствует несовпадению между двумя образцам, то есть . Это -е несовпадение при этом сдвиге, где , то есть .Вспомним, что нас интересует, совпадает ли символ текста в позиции
с соответствующими символом образца, когда совмещен с , то есть верно ли, что . Рассмотрим этот вопрос при разных комбинациях указанных выше условий.Случай 1: !A and !B: То есть,
и , откуда . Нет необходимости сравнивать символ текста с символом образца, так как ясно, что в этой позиции они совпадают.Случай 2: (A and !B) or (!A and B): В любом случае
(если лишь условие A истинно, то и , откуда , с другой стороны, если выполнено только условие B, то и , и опять, ). Как и в предыдущем случае, нет необходимости сравнивать символ текста с символом образца, так как известно, что они не совпадают.Случай 3: A and B: В этом случае мы ничего не можем сказать о том, совпадают ли символы
и , поэтому их надо сравнить.Возвращаемся к процедуре
. В случае 2, или если в случае 3 выявлено несовпадение символов, необходимо увеличить количество несовпадений символов на единицу и обновить . Соответствующими значениями таблицы для являются и . Переменные и в начале устанавливаются равными индексам первых элементов этих двух массивов, соответственно, и последовательно увеличиваются.Условия окончания работы процедуры следующие:
- Если , то для случая, когда образец расположен относительно текста так, что совмещен с , обнаружено несовпадение, поэтому из процедуры можно выйти.
- Bспомним, что самая правая из интересующих нас позиций в , а именно, , равна , если , поэтому будет уже использовано для предыдущего значения , а именно, , и поэтому позиция должна быть пропущена. Следовательно, в этом случае также можно выйти из процедуры.
- Процедуру можно прервать, если и . Если выполняется вторая часть этого условия, то равняется , и соответствует суммам для последующих значений вплоть до . В этом случае процедура может быть прервана, если выполняется также первая часть приведенного условия, так как она указывает, что позиция текста фактически пропущена.
Остается показать, что число позиций несовпадений в таблице несовпадений образца достаточно для того, чтобы
нашла все, или, если их больше , первые несовпадений для . Это можно показать следующим образом. Условие A выполняется не больше чем для позиции текста в диапазоне . Условие B выполняется для некоторого неизвестного числа позиций в этом же интервале. Строка в таблице несовпадений образца, , содержит не больше чем позиций несовпадений между двумя копиями образца, с соответствующим сдвигом . Если , то таблица содержит все позиции несовпадения образца самим с собой, у которых условие B выполняется для позиций текста в интервале . С другой стороны, если , то таблица может дать позиций текста в диапазоне , для которых выполняется условие B. Поскольку , в диапазоне имеется до позиций текста, для которых выполняется условие A. Таким образом, в худшем случае может быть позиций, для которых имеет место случай 3, и которые требуется сравнить напрямую. Остается по крайней мере позиций, удовлетворяющих условию B, но не условию A (случай 2), что является достаточным, чтобы заключить, что для данного положения образца относительно текста имеется не меньше несовпадений между текстом и образцом.
int merge(i : int, r : int, j : int) u = 1 v = q while (b < k + 1) and (v < k + 2) and (i + pm[i - r][u] < j or tm[r][v]m + 1) if i + pm[i - r][u] > r + tm[r][v] // Случай 2, условие A b++ tm[i][b] = tm[r][v] - (i - r) v++ else if i + pm[i - r][u] < r + tm[r][v] // Случай 2, условие B b++ tm[i][b] = pm[i - r][u] u++ else if i + pm[i - r][u] = r + tm[r][v] // Случай 3 if x[pm[i - r][u]] y[i + pm[i - r][u]] b++ tm[i][b] = pm[i - r][u] u++ v++ return b
|
Построение pm
Теперь осталось только обратиться к вычислению таблицы несовпадений образца на стадии предварительных вычислений. Не теряя общности, можно предположить, что
является некоторой степенью . В алгоритме предварительной обработки используется разбиение множества из строк на следующие подмножеств:
Алгоритм состоит из
этапов. На этапе , где , вычисляются строки в множестве , где множество — это .Метод, используемый для вычисления этой таблицы, основан на методе, используемом на стадии анализа текста. Рассмотрим алгоритм для этапа
. На стадии входами для алгоритма анализа образца являются подстроки образца и , которые трактуются здесь, соответственно, как образец и текст, и массив , содержащий выходы предыдущих стадий. Выходы стадии вводятся в . За исключением стадии , на которой находят до несовпадений, на стадии для каждой строки требуется найти до несовпадений, а не до , как в алгоритме анализа текста.
void precalcPm() pm[... ][1...min{ , }] = m + 1 r = j = for i = to b = 0 if i < j b = merge(i, r, j) if b < min{ } r = i extend(i, j, b)
|
Оценка сложности
Теперь исследуем затраты времени на анализ текста. Если исключить вызовы процедур
и , каждая из итераций цикла анализа текста выполняется за фиксированное время, что дает в общей сложности время . Общее число операций, выполняемых процедурой во время вызовов равно , так как она проверяет каждый символ текста не больше одного раза. Процедура при каждом вызове обрабатывает массив и , которые в сумме имеют элементов. Время работы можно рассчитать, соотнеся операции с фиксированным временем с каждым из этих входов, что дает время счета для каждого вызова, равное . Таким образом, можно видеть, что общее время анализа текста составляет .Рассмотрим построение
. Используя аргументы, аналогичные применявшимся при проверке корректности процедуры , можно показать, что для нахождения требуемого количества несовпадений на стадии требуется позиций, для которых выполняется условие B, и в особом случае, а именно, на стадии , требуется таких позиций.На каждой стадии
из стадий анализа образца цикл производит итераций . Если не считать время работы процедур и , каждая итерация требует фиксированного времени. Для всех итераций на шаге процедуре требуется время . Ранее было показано, что время работы пропорционально числу искомых несовпадений. Таким образом, каждый вызов занимает время , что равно . Таким образом, общее время для стадии равно = . Проведя суммирование по всем стадиям, получаем общее время счета . Таким образом, общие затраты времени, включающие предварительную обработку образца и анализ текста, равны .Пример
Пусть
, , .tm | 1 | 2 | 3 | x[1 | m]y[i+1 | i+m]
0 | 2 | 3 | 4 | tram | thet |
1 | 1 | 2 | 3 | tram | hetr |
2 | 1 | 2 | 3 | tram | etri |
3 | 3 | 4 | 5 | tram | trip |
4 | 1 | 2 | 3 | tram | ripp |
5 | 1 | 2 | 3 | tram | ippe |
6 | 1 | 2 | 3 | tram | pped |
7 | 1 | 2 | 3 | tram | pedt |
8 | 1 | 2 | 3 | tram | edtr |
9 | 1 | 2 | 3 | tram | dtra |
10 | 4 | 5 | 5 | tram | trap |
pm | 1 | 2 | 3 | 4 | 5 | x[1 | m-i]x[i+1 | m]
1 | 1 | 2 | 3 | 5 | 5 | tra | ram |
2 | 1 | 2 | 5 | 5 | 5 | tr | am |
3 | 1 | 5 | 5 | 5 | 5 | t | m |