Дек — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Определение)
м (rollbackEdits.php mass rollback)
 
(не показаны 23 промежуточные версии 6 участников)
Строка 1: Строка 1:
 
== Определение ==
 
== Определение ==
 
[[Файл:deque1.png|thumb|right|200px|Дек]]
 
[[Файл:deque1.png|thumb|right|200px|Дек]]
'''Дек''' (от англ. ''deque'' {{---}} double ended queue) {{---}} структура данных, представляющая из себя список элементов, в которой добавление новых элементов и удаление существующих производится с обоих концов. Эта структура поддерживает как FIFO, так и LIFO, поэтому на ней можно реализовать как стек, так и очередь. В первом случае нужно использовать только методы головы или хвоста, во втором {{---}} методы push и pop двух разных концов. Дек можно воспринимать как двустороннюю очередь. Он имеет следующие операции:
+
'''Дек''' (от англ. ''deque'' {{---}} double ended queue) {{---}} структура данных, представляющая из себя список элементов, в которой добавление новых элементов и удаление существующих производится с обоих концов. Эта структура поддерживает как FIFO, так и LIFO, поэтому на ней можно реализовать как [[Стек | стек]], так и [[Очередь | очередь]]. В первом случае нужно использовать только методы головы или хвоста, во втором {{---}} методы push и pop двух разных концов. Дек можно воспринимать как двустороннюю очередь. Он имеет следующие операции:
 
* <tex> \mathtt{empty} </tex> {{---}} проверка на наличие элементов,
 
* <tex> \mathtt{empty} </tex> {{---}} проверка на наличие элементов,
 
* <tex> \mathtt{pushBack} </tex> (запись в конец) {{---}} операция вставки нового элемента в конец,
 
* <tex> \mathtt{pushBack} </tex> (запись в конец) {{---}} операция вставки нового элемента в конец,
Строка 10: Строка 10:
 
== Реализации ==
 
== Реализации ==
 
Дек расходует только <tex>O(n)</tex> памяти, на хранение самих элементов.  
 
Дек расходует только <tex>O(n)</tex> памяти, на хранение самих элементов.  
Изначально переменные <tex> \mathtt{head} </tex> и <tex> \mathtt{tail} </tex> не должны различаться, то есть <tex> \mathtt{head = tail} </tex>.
 
 
=== Простая реализация ===
 
=== Простая реализация ===
 +
В данной реализации изначально <tex> \mathtt{head = n - 1} </tex> и <tex> \mathtt{tail = n - 1} </tex>.
 
Ключевые поля:
 
Ключевые поля:
 
* <tex>\mathtt{d[0\dots 2 \times n - 1]}</tex> {{---}} массив, с помощью которого реализуется дек, способный вместить не более <tex>n</tex> элементов,
 
* <tex>\mathtt{d[0\dots 2 \times n - 1]}</tex> {{---}} массив, с помощью которого реализуется дек, способный вместить не более <tex>n</tex> элементов,
* <tex>\mathtt{d.head}</tex> {{---}} индекс головы дека,
+
* <tex>\mathtt{head}</tex> {{---}} индекс головы дека,
* <tex>\mathtt{d.tail}</tex> {{---}} индекс хвоста.
+
* <tex>\mathtt{tail}</tex> {{---}} индекс хвоста.
  
Дек состоит из элементов <tex>\mathtt {d[d.head\dots d.tail]}</tex>. Если происходит максимум <tex>\mathtt {n}</tex> добавлений, то массив длины <tex>\mathtt {2 \times n}</tex> может вместить в себя все добавленные элементы. При этом <tex> \mathtt{d.head = n} </tex> и <tex> \mathtt{d.tail = n} </tex>.
+
Дек состоит из элементов <tex>\mathtt {d[head\dots tail - 1]}</tex>. Если происходит максимум <tex>\mathtt {n}</tex> добавлений, то массив длины <tex>\mathtt {2 \times n}</tex> может вместить в себя все добавленные элементы.
 
   
 
   
 
  '''boolean''' empty():
 
  '''boolean''' empty():
   '''return''' d.head == d.tail
+
   '''return''' head == tail
  
 
  '''function''' pushBack(x : '''T'''):
 
  '''function''' pushBack(x : '''T'''):
   d[d.tail] = x
+
   d[tail++] = x
  d.tail = d.tail + 1
 
  
 
  '''T''' popBack():
 
  '''T''' popBack():
 
   '''if''' (empty())  
 
   '''if''' (empty())  
 
     '''return''' <span style="color:red">error</span> "underflow"  
 
     '''return''' <span style="color:red">error</span> "underflow"  
  d.tail = d.tail - 1
+
   '''return''' d[--tail]
   '''return''' d[d.tail]
 
  
 
  '''function''' pushFront(x : '''T'''):
 
  '''function''' pushFront(x : '''T'''):
   d.head = d.head - 1
+
   d[--head] = x
  d[d.head] = x
 
  
 
  '''T''' popFront():
 
  '''T''' popFront():
 
   '''if''' (empty())  
 
   '''if''' (empty())  
 
     '''return''' <span style="color:red">error</span> "underflow"  
 
     '''return''' <span style="color:red">error</span> "underflow"  
   '''T''' ret = d[d.head]
+
   '''return''' d[head++]
  d.head = d.head + 1
 
  '''return''' ret
 
  
 
=== Циклический дек на массиве константной длины ===
 
=== Циклический дек на массиве константной длины ===
 +
Во всех циклических реализациях изначально присвоены следующие значения <tex> \mathtt{head = 0} </tex> и <tex> \mathtt{tail = 0} </tex>.
 
Ключевые поля:
 
Ключевые поля:
 
* <tex>\mathtt{d[0\dots n-1]}</tex> {{---}} массив, с помощью которого реализуется дек, способный вместить не более <tex>n</tex> элементов,
 
* <tex>\mathtt{d[0\dots n-1]}</tex> {{---}} массив, с помощью которого реализуется дек, способный вместить не более <tex>n</tex> элементов,
* <tex>\mathtt{d.head}</tex> {{---}} индекс головы дека,
+
* <tex>\mathtt{head}</tex> {{---}} индекс головы дека,
* <tex>\mathtt{d.tail}</tex> {{---}} индекс хвоста.
+
* <tex>\mathtt{tail}</tex> {{---}} индекс хвоста.
  
Дек состоит из элементов <tex>\mathtt {d[d.head\dots d.tail]}</tex> или <tex>\mathtt {d[0\dots d.tail]}</tex> и <tex>\mathtt {d[d.head\dots n-1]}</tex>. Всего он способен вместить не более <tex>n</tex> элементов. В данной реализации учитывается переполнение и правильно обрабатывается изъятие из пустого дека. Недостатком является константная длина массива, хранящего элементы. Все операции выполняются за <tex>O(1)</tex>.
+
Дек состоит из элементов <tex>\mathtt {d[head\dots tail-1]}</tex> или <tex>\mathtt {d[0\dots tail-1]}</tex> и <tex>\mathtt {d[head\dots n-1]}</tex>. Всего он способен вместить не более <tex>n</tex> элементов. В данной реализации учитывается переполнение и правильно обрабатывается изъятие из пустого дека. Недостатком является константная длина массива, хранящего элементы. Все операции выполняются за <tex>O(1)</tex>.
  
 
  '''function''' pushBack(x : '''T'''):
 
  '''function''' pushBack(x : '''T'''):
   '''if''' (d.head == (d.tail + 1) % n)
+
   '''if''' (head == (tail + 1) % n)
 
     '''return''' <span style="color:red">error</span> "overflow"
 
     '''return''' <span style="color:red">error</span> "overflow"
   d[d.tail] = x
+
   d[tail] = x
   d.tail = (d.tail + 1) % n
+
   tail = (tail + 1) % n
  
 
  '''T''' popBack():
 
  '''T''' popBack():
 
   '''if''' (empty())  
 
   '''if''' (empty())  
 
     '''return''' <span style="color:red">error</span> "underflow"  
 
     '''return''' <span style="color:red">error</span> "underflow"  
   d.tail = (d.tail - 1 + n) % n
+
   tail = (tail - 1 + n) % n
   '''return''' d[d.tail]
+
   '''return''' d[tail]
  
 
  '''function''' pushFront(x : '''T'''):
 
  '''function''' pushFront(x : '''T'''):
   '''if''' (d.head == (d.tail + 1) % n)
+
   '''if''' (head == (tail + 1) % n)
 
     '''return''' <span style="color:red">error</span> "overflow"
 
     '''return''' <span style="color:red">error</span> "overflow"
   d.head = (d.head - 1 + n) % n
+
   head = (head - 1 + n) % n
   d[d.head] = x
+
   d[head] = x
  
 
  '''T''' popFront():
 
  '''T''' popFront():
 
   '''if''' (empty())  
 
   '''if''' (empty())  
 
     '''return''' <span style="color:red">error</span> "underflow"  
 
     '''return''' <span style="color:red">error</span> "underflow"  
   '''T''' ret = d[d.head]
+
   '''T''' ret = d[head]
   d.head = (d.head + 1) % n
+
   head = (head + 1) % n
 
   '''return''' ret
 
   '''return''' ret
  
 
=== Циклический дек на динамическом массиве ===
 
=== Циклический дек на динамическом массиве ===
 
Ключевые поля:
 
Ключевые поля:
 +
* <tex>\mathtt{n}</tex> {{---}} размер массива,
 
* <tex>\mathtt{d[0\dots n-1]}</tex> {{---}} массив, в котором хранится дек,
 
* <tex>\mathtt{d[0\dots n-1]}</tex> {{---}} массив, в котором хранится дек,
 
* <tex>\mathtt{newDeque[0\dots newSize]}</tex> {{---}} временный массив, где хранятся элементы после перекопирования,
 
* <tex>\mathtt{newDeque[0\dots newSize]}</tex> {{---}} временный массив, где хранятся элементы после перекопирования,
* <tex>\mathtt{d.head}</tex> {{---}} индекс головы дека,
+
* <tex>\mathtt{head}</tex> {{---}} индекс головы дека,
* <tex>\mathtt{d.tail}</tex> {{---}} индекс хвоста,
+
* <tex>\mathtt{tail}</tex> {{---}} индекс хвоста.
* <tex>\mathtt{capacity}</tex> {{---}} размер массива.
 
  
Дек состоит из элементов <tex>\mathtt {d[d.head\dots d.tail]}</tex> или <tex>\mathtt {d[0\dots d.tail]}</tex> и <tex>\mathtt {d[d.head\dots n-1]}</tex>. Если реализовывать дек на динамическом массиве, то мы можем избежать ошибки переполнения. При выполнении операций <tex>\mathtt{pushBack}</tex> и <tex>\mathtt{pushFront}</tex> происходит проверка на переполнение и, если нужно, выделяется большее количество памяти под массив. Также происходит проверка на избыточность памяти, выделенной под дек при выполнении операций <tex>\mathtt{popBack}</tex> и <tex>\mathtt{popFront}</tex>. Если памяти под дек выделено в четыре раза больше размера дека, то массив сокращается в два раза. Для удобства выделим в отдельную функцию <tex>\mathtt{size}</tex> получение текущего размера дека.
+
Дек состоит из элементов <tex>\mathtt {d[head\dots tail-1]}</tex> или <tex>\mathtt {d[0\dots tail-1]}</tex> и <tex>\mathtt {d[head\dots n-1]}</tex>. Если реализовывать дек на [[Динамический_массив | динамическом массиве]], то мы можем избежать ошибки переполнения. При выполнении операций <tex>\mathtt{pushBack}</tex> и <tex>\mathtt{pushFront}</tex> происходит проверка на переполнение и, если нужно, выделяется большее количество памяти под массив. Также происходит проверка на избыточность памяти, выделенной под дек при выполнении операций <tex>\mathtt{popBack}</tex> и <tex>\mathtt{popFront}</tex>. Если памяти под дек выделено в четыре раза больше размера дека, то массив сокращается в два раза. Для удобства выделим в отдельную функцию <tex>\mathtt{size}</tex> получение текущего размера дека.
 
   
 
   
 
  '''int''' size()
 
  '''int''' size()
   '''if''' d.tail > d.head
+
   '''if''' tail > head
     '''return''' n - d.head + d.tail
+
     '''return''' n - head + tail
 
   '''else'''
 
   '''else'''
     '''return''' d.tail - d.head
+
     '''return''' tail - head
  
 
  '''function''' pushBack(x : '''T'''):
 
  '''function''' pushBack(x : '''T'''):
   '''if''' (d.head == d.tail)
+
   '''if''' (head == (tail + 1) % n)
     '''T''' newDeque[capacity * 2]
+
     '''T''' newDeque[n * 2]
     '''for''' i = 0 '''to''' capacity - 1
+
     '''for''' i = 0 '''to''' n - 2
       newDeque[i] = d[d.head]
+
       newDeque[i] = d[head]
       d.head = (d.head + 1) % n
+
       head = (head + 1) % n
 
     d = newDeque
 
     d = newDeque
     d.head = 0
+
     head = 0
     d.tail = capacity - 1
+
     tail = n - 1
     capacity = capacity * 2
+
     n *= 2
   d[d.tail] = x
+
   d[tail] = x
   d.tail = (d.tail + 1) % n
+
   tail = (tail + 1) % n
  
 
  '''T''' popBack():
 
  '''T''' popBack():
 
   '''if''' (empty())  
 
   '''if''' (empty())  
 
     '''return''' <span style="color:red">error</span> "underflow"
 
     '''return''' <span style="color:red">error</span> "underflow"
   '''if''' (size() < capacity / 4)
+
   '''if''' (size() < n / 4)
     '''T''' newDeque[capacity / 2]
+
     '''T''' newDeque[n / 2]
     '''for''' i = 0 '''to''' size()
+
    '''int''' dequeSize = size()
       newDeque[i] = d[d.head]
+
     '''for''' i = 0 '''to''' dequeSize - 1
       d.head = (d.head + 1) % n
+
       newDeque[i] = d[head]
 +
       head = (head + 1) % n
 
     d = newDeque
 
     d = newDeque
     d.head = 0
+
     head = 0
     d.tail = size()
+
     tail = dequeSize
     capacity = capacity / 2
+
     n /= 2
   d.tail = (d.tail - 1 + n) % n
+
   tail = (tail - 1 + n) % n
   '''return''' d[d.tail]
+
   '''return''' d[tail]
  
 
  '''function''' pushFront(x : '''T'''):
 
  '''function''' pushFront(x : '''T'''):
   '''if''' (d.head == d.tail)
+
   '''if''' (head == (tail + 1) % n)
     '''T''' newDeque[capacity * 2]
+
     '''T''' newDeque[n * 2]
     '''for''' i = 0 '''to''' capacity - 1
+
     '''for''' i = 0 '''to''' n - 2
       newDeque[i] = d[d.head]
+
       newDeque[i] = d[head]
       d.head = (d.head + 1) % n
+
       head = (head + 1) % n
 
     d = newDeque
 
     d = newDeque
     d.head = 0
+
     head = 0
     d.tail = capacity - 1
+
     tail = n - 1
     capacity = capacity * 2
+
     n *= 2
   d.head = (d.head - 1 + n) % n
+
   head = (head - 1 + n) % n
   d[d.head] = x
+
   d[head] = x
  
 
  '''T''' popFront():
 
  '''T''' popFront():
 
   '''if''' (empty())  
 
   '''if''' (empty())  
 
     '''return''' <span style="color:red">error</span> "underflow"  
 
     '''return''' <span style="color:red">error</span> "underflow"  
   '''if''' (size() < capacity / 4)
+
   '''if''' (size() < n / 4)
     '''T''' newDeque[capacity / 2]
+
     '''T''' newDeque[n / 2]
     '''for''' i = 0 '''to''' size()
+
    '''int''' dequeSize = size()
       newDeque[i] = d[d.head]
+
     '''for''' i = 0 '''to''' dequeSize - 1
       d.head = (d.head + 1) % n
+
       newDeque[i] = d[head]
 +
       head = (head + 1) % n
 
     d = newDeque
 
     d = newDeque
     d.head = 0
+
     head = 0
     d.tail = size()
+
     tail = dequeSize
     capacity = capacity / 2
+
     n /= 2
   '''T''' ret = d[d.head]
+
   '''T''' ret = d[head]
   d.head = (d.head + 1) % n
+
   head = (head + 1) % n
 
   '''return''' ret
 
   '''return''' ret
  
Строка 155: Строка 153:
 
* <tex>\mathtt{head}</tex> {{---}} ссылка на голову.
 
* <tex>\mathtt{head}</tex> {{---}} ссылка на голову.
  
Дек состоит из элементов <tex>\mathtt {head\dots tail}</tex>. Дек очень просто реализуется на двусвязном списке. Элементы всегда добавляются либо в <tex>\mathtt{tail.prev}</tex>, либо в <tex>\mathtt{head.next}</tex>. В данной реализации не учитывается изъятие из пустого дека.
+
Дек очень просто реализуется на [[Список | двусвязном списке]]. Он состоит из элементов <tex>\mathtt {head\dots tail}</tex>. Элементы всегда добавляются либо в <tex>\mathtt{tail.prev}</tex>, либо в <tex>\mathtt{head.next}</tex>. В данной реализации не учитывается изъятие из пустого дека.
 +
 
 +
'''function''' initialize():
 +
  head = ListItem(''null'', ''null'', ''null'')
 +
  tail = ListItem(''null'', ''null'', head)
 +
  head.next = tail
  
 
  '''function''' pushBack(x : '''T'''):
 
  '''function''' pushBack(x : '''T'''):
Строка 180: Строка 183:
 
* <tex>\mathtt{rightStack}</tex> {{---}} ссылка на голову.
 
* <tex>\mathtt{rightStack}</tex> {{---}} ссылка на голову.
  
Храним два стека — <tex>\mathtt{leftStack}</tex> и <tex>\mathtt{rightStack}</tex>. Левый стек используем для операций <tex>\mathtt{popBack}</tex> и <tex>\mathtt{pushBack}</tex>, правый — для <tex>\mathtt{popFront}</tex> и <tex>\mathtt{pushFront}</tex>. Если мы хотим работать с левым стеком и при этом он оказывается пустым, то достаем нижнюю половину элементов из правого и кладем в левый, воспользовавшись при этом локальным стеком. Аналогично с правым стеком. Худшее время работы — <tex>O(n)</tex>, однако, амортизационная стоимость операции — <tex>O(1)</tex>.
+
Храним два [[Стек | стека]] — <tex>\mathtt{leftStack}</tex> и <tex>\mathtt{rightStack}</tex>. Левый стек используем для операций <tex>\mathtt{popBack}</tex> и <tex>\mathtt{pushBack}</tex>, правый — для <tex>\mathtt{popFront}</tex> и <tex>\mathtt{pushFront}</tex>. Если мы хотим работать с левым стеком и при этом он оказывается пустым, то достаем нижнюю половину элементов из правого и кладем в левый, воспользовавшись при этом локальным стеком. Аналогично с правым стеком. Худшее время работы — <tex>O(n)</tex>.
  
 
  '''function''' pushBack(x : '''T'''):
 
  '''function''' pushBack(x : '''T'''):
Строка 191: Строка 194:
 
     '''int''' size = rightStack.size()
 
     '''int''' size = rightStack.size()
 
     '''Stack<T>''' local
 
     '''Stack<T>''' local
     '''for''' i = 0 '''to''' size / 2
+
     '''for''' i = 0 '''to''' size / 2  
 
       local.push(rightStack.pop())
 
       local.push(rightStack.pop())
 
     '''while''' '''not''' rightStack.empty()
 
     '''while''' '''not''' rightStack.empty()
Строка 208: Строка 211:
 
     '''int''' size = leftStack.size()
 
     '''int''' size = leftStack.size()
 
     '''Stack<T>''' local
 
     '''Stack<T>''' local
     '''for''' i = 0 '''to''' size / 2
+
     '''for''' i = 0 '''to''' size / 2  
 
       local.push(leftStack.pop())
 
       local.push(leftStack.pop())
 
     '''while''' '''not''' leftStack.empty()
 
     '''while''' '''not''' leftStack.empty()
Строка 215: Строка 218:
 
       leftStack.push(local.pop())
 
       leftStack.push(local.pop())
 
     '''return''' rightStack.pop()
 
     '''return''' rightStack.pop()
 +
 +
{{Лемма
 +
|statement=Амортизированная стоимость операции в таком деке {{---}} <tex>O(1)</tex>.
 +
|proof=Воспользуемся методом предоплаты для доказательства. Достаточно доказать, что между двумя балансировками происходит достаточно амортизирующих их операций.
 +
 +
Вначале в обоих стеках пусто, поэтому они сбалансированы. Рассмотрим дек после очередной балансировки, будем использовать две монеты для операций <tex>\mathtt{push}</tex> и <tex>\mathtt{pop}</tex> {{---}} одну для самой операции, а другую {{---}} в качестве резерва.
 +
 +
Разберем худший случай: после очередной балансировки происходит удаление всех элементов только из одного стека. В таком случае при удалении кладем одну резервную монету на элемент из другого стека. Тогда учетная стоимость следующей балансировки равна нулю, поскольку на всех элементах дека лежит по монете.
 +
}}
  
 
== См. также ==
 
== См. также ==
Строка 222: Строка 234:
  
 
== Источники информации ==
 
== Источники информации ==
* [[wikipedia:ru:Двусвязная_очередь|Википедия {{---}} Дек (программирование)]]
+
* [[wikipedia:ru:Двусвязная_очередь|Википедия {{---}} Дек]]
* http://opendatastructures.org/ods-cpp/2_5_Building_Deque_from_Two.html
+
* [[wikipedia:en:Deque|Wikipedia {{---}} Deque]]
 +
* [http://opendatastructures.org/ods-cpp/2_5_Building_Deque_from_Two.html Open Data Structures {{---}} Building a Deque from Two Stacks]
 +
 
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Амортизационный анализ]]
 
[[Категория: Амортизационный анализ]]

Текущая версия на 19:35, 4 сентября 2022

Определение

Дек

Дек (от англ. deque — double ended queue) — структура данных, представляющая из себя список элементов, в которой добавление новых элементов и удаление существующих производится с обоих концов. Эта структура поддерживает как FIFO, так и LIFO, поэтому на ней можно реализовать как стек, так и очередь. В первом случае нужно использовать только методы головы или хвоста, во втором — методы push и pop двух разных концов. Дек можно воспринимать как двустороннюю очередь. Он имеет следующие операции:

  • [math] \mathtt{empty} [/math] — проверка на наличие элементов,
  • [math] \mathtt{pushBack} [/math] (запись в конец) — операция вставки нового элемента в конец,
  • [math] \mathtt{popBack} [/math] (снятие с конца) — операция удаления конечного элемента,
  • [math] \mathtt{pushFront} [/math] (запись в начало) — операция вставки нового элемента в начало,
  • [math] \mathtt{popFront} [/math] (снятие с начала) — операция удаления начального элемента.

Реализации

Дек расходует только [math]O(n)[/math] памяти, на хранение самих элементов.

Простая реализация

В данной реализации изначально [math] \mathtt{head = n - 1} [/math] и [math] \mathtt{tail = n - 1} [/math]. Ключевые поля:

  • [math]\mathtt{d[0\dots 2 \times n - 1]}[/math] — массив, с помощью которого реализуется дек, способный вместить не более [math]n[/math] элементов,
  • [math]\mathtt{head}[/math] — индекс головы дека,
  • [math]\mathtt{tail}[/math] — индекс хвоста.

Дек состоит из элементов [math]\mathtt {d[head\dots tail - 1]}[/math]. Если происходит максимум [math]\mathtt {n}[/math] добавлений, то массив длины [math]\mathtt {2 \times n}[/math] может вместить в себя все добавленные элементы.

boolean empty():
  return head == tail
function pushBack(x : T):
  d[tail++] = x
T popBack():
  if (empty()) 
    return error "underflow" 
  return d[--tail]
function pushFront(x : T):
  d[--head] = x
T popFront():
  if (empty()) 
    return error "underflow" 
  return d[head++]

Циклический дек на массиве константной длины

Во всех циклических реализациях изначально присвоены следующие значения [math] \mathtt{head = 0} [/math] и [math] \mathtt{tail = 0} [/math]. Ключевые поля:

  • [math]\mathtt{d[0\dots n-1]}[/math] — массив, с помощью которого реализуется дек, способный вместить не более [math]n[/math] элементов,
  • [math]\mathtt{head}[/math] — индекс головы дека,
  • [math]\mathtt{tail}[/math] — индекс хвоста.

Дек состоит из элементов [math]\mathtt {d[head\dots tail-1]}[/math] или [math]\mathtt {d[0\dots tail-1]}[/math] и [math]\mathtt {d[head\dots n-1]}[/math]. Всего он способен вместить не более [math]n[/math] элементов. В данной реализации учитывается переполнение и правильно обрабатывается изъятие из пустого дека. Недостатком является константная длина массива, хранящего элементы. Все операции выполняются за [math]O(1)[/math].

function pushBack(x : T):
  if (head == (tail + 1) % n)
    return error "overflow"
  d[tail] = x
  tail = (tail + 1) % n
T popBack():
  if (empty()) 
    return error "underflow" 
  tail = (tail - 1 + n) % n
  return d[tail]
function pushFront(x : T):
  if (head == (tail + 1) % n)
    return error "overflow"
  head = (head - 1 + n) % n
  d[head] = x
T popFront():
  if (empty()) 
    return error "underflow" 
  T ret = d[head]
  head = (head + 1) % n
  return ret

Циклический дек на динамическом массиве

Ключевые поля:

  • [math]\mathtt{n}[/math] — размер массива,
  • [math]\mathtt{d[0\dots n-1]}[/math] — массив, в котором хранится дек,
  • [math]\mathtt{newDeque[0\dots newSize]}[/math] — временный массив, где хранятся элементы после перекопирования,
  • [math]\mathtt{head}[/math] — индекс головы дека,
  • [math]\mathtt{tail}[/math] — индекс хвоста.

Дек состоит из элементов [math]\mathtt {d[head\dots tail-1]}[/math] или [math]\mathtt {d[0\dots tail-1]}[/math] и [math]\mathtt {d[head\dots n-1]}[/math]. Если реализовывать дек на динамическом массиве, то мы можем избежать ошибки переполнения. При выполнении операций [math]\mathtt{pushBack}[/math] и [math]\mathtt{pushFront}[/math] происходит проверка на переполнение и, если нужно, выделяется большее количество памяти под массив. Также происходит проверка на избыточность памяти, выделенной под дек при выполнении операций [math]\mathtt{popBack}[/math] и [math]\mathtt{popFront}[/math]. Если памяти под дек выделено в четыре раза больше размера дека, то массив сокращается в два раза. Для удобства выделим в отдельную функцию [math]\mathtt{size}[/math] получение текущего размера дека.

int size()
  if tail > head
    return n - head + tail
  else
    return tail - head
function pushBack(x : T):
  if (head == (tail + 1) % n)
    T newDeque[n * 2]
    for i = 0 to n - 2
      newDeque[i] = d[head]
      head = (head + 1) % n
    d = newDeque
    head = 0
    tail = n - 1
    n *= 2
  d[tail] = x
  tail = (tail + 1) % n
T popBack():
  if (empty()) 
    return error "underflow"
  if (size() < n / 4)
    T newDeque[n / 2]
    int dequeSize = size()
    for i = 0 to dequeSize - 1
      newDeque[i] = d[head]
      head = (head + 1) % n
    d = newDeque
    head = 0
    tail = dequeSize
    n /= 2
  tail = (tail - 1 + n) % n
  return d[tail]
function pushFront(x : T):
  if (head == (tail + 1) % n)
    T newDeque[n * 2]
    for i = 0 to n - 2
      newDeque[i] = d[head]
      head = (head + 1) % n
    d = newDeque
    head = 0
    tail = n - 1
    n *= 2
  head = (head - 1 + n) % n
  d[head] = x
T popFront():
  if (empty()) 
    return error "underflow" 
  if (size() < n / 4)
    T newDeque[n / 2]
    int dequeSize = size()
    for i = 0 to dequeSize - 1
      newDeque[i] = d[head]
      head = (head + 1) % n
    d = newDeque
    head = 0
    tail = dequeSize
    n /= 2
  T ret = d[head]
  head = (head + 1) % n
  return ret

На списке

Ключевые поля:

  • ListItem(data : T, next : ListItem, prev : ListItem) — конструктор,
  • [math]\mathtt{tail}[/math] — ссылка на хвост,
  • [math]\mathtt{head}[/math] — ссылка на голову.

Дек очень просто реализуется на двусвязном списке. Он состоит из элементов [math]\mathtt {head\dots tail}[/math]. Элементы всегда добавляются либо в [math]\mathtt{tail.prev}[/math], либо в [math]\mathtt{head.next}[/math]. В данной реализации не учитывается изъятие из пустого дека.

function initialize():
  head = ListItem(null, null, null)
  tail = ListItem(null, null, head)
  head.next = tail
function pushBack(x : T):
  head = ListItem(x, head, null)
  head.next.prev = head
T popBack():
  data = head.data
  head = head.next
  return data
function pushFront(x : T):
  tail = ListItem(x, null, tail)
  tail.prev.next = tail
T popFront():
  data = tail.data
  tail = tail.prev
  return data

На двух стеках

Ключевые поля:

  • [math]\mathtt{leftStack}[/math] — ссылка на хвост,
  • [math]\mathtt{rightStack}[/math] — ссылка на голову.

Храним два стека[math]\mathtt{leftStack}[/math] и [math]\mathtt{rightStack}[/math]. Левый стек используем для операций [math]\mathtt{popBack}[/math] и [math]\mathtt{pushBack}[/math], правый — для [math]\mathtt{popFront}[/math] и [math]\mathtt{pushFront}[/math]. Если мы хотим работать с левым стеком и при этом он оказывается пустым, то достаем нижнюю половину элементов из правого и кладем в левый, воспользовавшись при этом локальным стеком. Аналогично с правым стеком. Худшее время работы — [math]O(n)[/math].

function pushBack(x : T):
  leftStack.push(x)
T popBack():
  if not leftStack.empty()
    return leftStack.pop() 
  else
    int size = rightStack.size()
    Stack<T> local
    for i = 0 to size / 2 
      local.push(rightStack.pop())
    while not rightStack.empty()
      leftStack.push(rightStack.pop())
    while not local.empty()
      rightStack.push(local.pop())
    return leftStack.pop()
function pushFront(x : T):
  rightStack.push(x)
T popFront():
  if not rightStack.empty()
    return rightStack.pop() 
  else
    int size = leftStack.size()
    Stack<T> local
    for i = 0 to size / 2 
      local.push(leftStack.pop())
    while not leftStack.empty()
      rightStack.push(leftStack.pop())
    while not local.empty()
      leftStack.push(local.pop())
    return rightStack.pop()
Лемма:
Амортизированная стоимость операции в таком деке — [math]O(1)[/math].
Доказательство:
[math]\triangleright[/math]

Воспользуемся методом предоплаты для доказательства. Достаточно доказать, что между двумя балансировками происходит достаточно амортизирующих их операций.

Вначале в обоих стеках пусто, поэтому они сбалансированы. Рассмотрим дек после очередной балансировки, будем использовать две монеты для операций [math]\mathtt{push}[/math] и [math]\mathtt{pop}[/math] — одну для самой операции, а другую — в качестве резерва.

Разберем худший случай: после очередной балансировки происходит удаление всех элементов только из одного стека. В таком случае при удалении кладем одну резервную монету на элемент из другого стека. Тогда учетная стоимость следующей балансировки равна нулю, поскольку на всех элементах дека лежит по монете.
[math]\triangleleft[/math]

См. также

Источники информации