Динамический массив

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Массив — набор однотипных переменных, доступ к которым осуществляется по индексу. Динамический массив может изменять свой размер в зависимости от количества элементов в нём.


Операции[править]

Определим операции, которые мы будем применять к динамическому массиву:

get(i)[править]

Возвращает значение [math]i[/math]-ой ячейки массива. Время выполнения — [math]O(1)[/math].

set(i,x)[править]

В [math]i[/math]-ую ячейку массива записывается элемент [math]x[/math]. Время выполнения — [math]O(1)[/math].

add(x)[править]

Добавление в массив элемента [math]x[/math]. Время выполнения — [math]O(1)[/math]; в худшем случае, при котором необходимо перенести все элементы из текущего массива в вдвое больший массив — [math]O(n)[/math] ([math]n[/math] — размер массива).

del()[править]

Удаляет последний элемент массива. В случае, если количество элементов в массиве в [math]C[/math] раз меньше его длины, то происходит сжатие в [math]B[/math] раз. ([math]C,B[/math] — константы, зависящие от реализации). Время выполнения операции в худшем случае — [math]O(n)[/math].

size()[править]

Возвращает количество элементов массива. Время выполнения — [math]O(1)[/math].

Амортизационная стоимость каждой операции[править]

Пусть наш массив расширяется в [math]2[/math] раза, и уменьшается в [math]2[/math] раза, когда длина массива в [math]4[/math] раза больше количества элементов в массиве. В этом случае амортизационная стоимость каждой операции будет [math]O(1)[/math].

Метод предоплаты[править]

Стоимость операции add(x)[править]

Иллюстрация

Пусть у нас единицей стоимости операции является одна монетка. Тогда при каждой операции add(x), при которой нам не требуется копирование, мы будем использовать три монетки. Из них одна пойдёт на стоимость самой этой операции, а две будут в резерве (пусть, если мы добавили [math]i[/math]-ый элемент, мы будем класть по одной монетке к элементам с номерами [math]i[/math] и [math]i-\frac{n}{2}[/math]). В итоге, к тому моменту, как массив будет заполнен, рядом с каждым элементом будет лежать по одной монетке, которую мы и можем использовать на его копирование в новый массив. Таким образом, амортизационная стоимость каждой операции add(x)[math]3[/math], и среднее время её работы — [math]O(1)[/math].

Стоимость операции del()[править]

При каждой операции будем использовать две монетки. Одну из них потратим на само удаление элемента, другую на элемент, стоящий на позиции [math]i \bmod \dfrac{n}{4}[/math]. Тогда даже в самом худшем случае (только что расширились, а потом [math]\dfrac{n}{4}[/math] удалили) у каждого элемента из первых [math]\dfrac{n}{4}[/math] будет по монете и на удаление надо будет потратить только [math]1[/math] монету.

Метод потенциалов[править]

За потенциал примем число: [math]\Phi(c, s) = \begin{cases} 2s-c, & \text{if } s\geqslant\frac{1}{2}c \\ \frac{1}{2}c-s, & \text{if } s\lt \frac{1}{2}c \end{cases}[/math]

где [math]c[/math] — размер массива, [math]s[/math] — число элементов массива.

Стоимость операции add(x)[править]

  • [math]\frac{s}{c} = 1[/math], массив расширяется: [math] a_i = t_i + \Phi(2c, s + 1) - \Phi(c, s) = (s + 1) + (2(s+1)-2c)-(2s-c) = 3 [/math]
  • [math]1\gt \frac{s}{c}\geqslant\frac{1}{2}[/math], массив не расширяется: [math]a_i=t_i+\Phi(c,s+1)-\Phi(c,s)=1+(2(s+1)-c)-(2s-c)=3[/math]
  • [math]\frac{s}{c}\lt \frac{1}{2}, \frac{s+1}{c}\geqslant\frac{1}{2}[/math], массив не расширяется:

[math]a_i = t_i + \Phi(c, s+1)-\Phi(c, s)= 1 +(2(s+1)-c)-(\frac{1}{2}c - s)= 3+3s-\frac{3}{2}c= 3 + \frac{s}{c}3c-\frac{3}{2}c \lt 3+\frac{3}{2}c-\frac{3}{2}c=3[/math]

  • [math]\frac{s}{c}\lt \frac{1}{2}, \frac{s+1}{c}\lt \frac{1}{2}[/math], массив не расширяется: [math]a_i = t_i + \Phi(c, s + 1) - \Phi(c, s) = 1 + (\frac{1}{2}c - (s + 1)) - (\frac{1}{2}c - s) = 0[/math]

В итоге, средняя стоимость операции — [math]3[/math], а среднее время работы — [math]O(1)[/math].

Стоимость операции del()[править]

  • [math]\frac{s}{c}=\frac{1}{4}[/math], массив сужается: [math]a_i = t_i + \Phi(\frac{c}{2}, s - 1) - \Phi(c, s) = s + (\frac{1}{2}\cdot\frac{1}{2}c-(s-1)) - (\frac{1}{2}c-s) = 1-\frac{1}{4}c+s=1[/math]
  • [math]\frac{1}{4}\lt \frac{s}{c}\lt \frac{1}{2}[/math], массив не сужается: [math]a_i = t_i + \Phi(c, s - 1) - \Phi(c, s) = 1 + (\frac{1}{2}c-(s-1))-(\frac{1}{2}c-s)= 2[/math]
  • [math]\frac{s}{c}\geqslant\frac{1}{2}, \frac{s-1}{c}\lt \frac{1}{2}\Rightarrow s=\frac{1}{2}c[/math], массив не сужается: [math]a_i = t_i + \Phi(c, s - 1) - \Phi(c, s) =1 +(\frac{1}{2}c-(s-1))-(2s-c)=2+\frac{3}{2}c-3s = 2[/math]
  • [math]\frac{s}{c}\gt \frac{1}{2}[/math], массив не сужается: [math]a_i = t_i + \Phi(c, s - 1) - \Phi(c, s) = 1 + (2(s-1)-c)-(2s-c)=0[/math]

Средняя стоимость операции — [math]2[/math], а среднее время работы — [math]O(1)[/math].

Динамические массивы в современных языках программирования[править]

Динамические массивы широко применяются во многих языках программирования. Рассмотрим, как эта структура данных реализуется в С++ и Java.

С++ — vector[править]

В С++ динамический массив используется в структуре vector, она описана в STL(<vector>). Стратегия расширения проста: при попытке записи в массив нового элемента в момент полного заполнения памяти происходит увеличение размера в [math]2[/math] раза при компиляции GNU C++ и в [math]1.5[/math] раза при компиляции Microsoft Visual C++. При удалении элементов уменьшение размера массива никогда не происходит. При инициализации vector по-умолчанию начальный размер равен [math]0[/math].

Java — ArrayList[править]

В Java структура ArrayList основана на динамическом массиве. При превышении максимального на данный момент размера происходит увеличение в [math]1.5[/math] раза. Причем начальный размер равен [math]10[/math]. Как и в vector, в ArrayList не предусмотрено изменение размера при удалении элементов. Для принудительного изменения размера следует использовать метод trimToSize().

Источники информации[править]