Объём — различия между версиями
(Площадь параллелепипеда) |
м (rollbackEdits.php mass rollback) |
||
(не показано 6 промежуточных версий 3 участников) | |||
Строка 30: | Строка 30: | ||
<tex> J = | <tex> J = | ||
\begin{vmatrix} \dfrac{\partial x_1}{\partial \xi_1} & \dfrac{\partial x_2}{\partial \xi_1} & \cdots & \dfrac{\partial x_n}{\partial \xi_1} | \begin{vmatrix} \dfrac{\partial x_1}{\partial \xi_1} & \dfrac{\partial x_2}{\partial \xi_1} & \cdots & \dfrac{\partial x_n}{\partial \xi_1} | ||
− | \\ \dfrac{\partial x_1}{\partial \xi_2} & \dfrac{\partial x_2}{\partial \xi_2} & \cdots &\dfrac{\partial | + | \\ \dfrac{\partial x_1}{\partial \xi_2} & \dfrac{\partial x_2}{\partial \xi_2} & \cdots &\dfrac{\partial x_n}{\partial \xi_2} |
\\ \vdots & \vdots & \ddots & \vdots | \\ \vdots & \vdots & \ddots & \vdots | ||
− | \\ \dfrac{\partial x_1}{\partial \xi_n} & \dfrac{\partial x_2}{\partial \xi_n} & \cdots &\dfrac{\partial | + | \\ \dfrac{\partial x_1}{\partial \xi_n} & \dfrac{\partial x_2}{\partial \xi_n} & \cdots &\dfrac{\partial x_n}{\partial \xi_n} |
\end{vmatrix} | \end{vmatrix} | ||
</tex>, | </tex>, | ||
Строка 46: | Строка 46: | ||
===Вычисление объема=== | ===Вычисление объема=== | ||
− | Объём тела в <tex>n</tex>-мерном пространстве вычисляется как определённый интеграл | + | Объём тела в <tex>n</tex>-мерном пространстве вычисляется как определённый интеграл |
− | <tex>\displaystyle \idotsint\limits_{\mathbb{R}^n}\chi(x_1, \dots, x_n)\mathrm dx_1\dots \mathrm dx_n </tex>, где <tex>\chi(x_1, \dots, x_n)</tex> – характеристическая функция геометрического образа тела. | + | <tex>\displaystyle \idotsint\limits_{\mathbb{R}^n}\chi(x_1, \dots, x_n)\mathrm dx_1\dots \mathrm dx_n </tex>, |
+ | |||
+ | где <tex>\chi(x_1, \dots, x_n)</tex> – характеристическая функция геометрического образа тела. | ||
==Вычисление объема простых фигур== | ==Вычисление объема простых фигур== | ||
Строка 54: | Строка 56: | ||
Пусть параллелепипед задаётся точкой <math>p</math>, и ЛНЗ векторами <math>\{\vec{a_i}\}_{i=0}^n</math>, | Пусть параллелепипед задаётся точкой <math>p</math>, и ЛНЗ векторами <math>\{\vec{a_i}\}_{i=0}^n</math>, | ||
<math>\chi(x_1, \dots, x_n)</math> — его характеристическая функция. | <math>\chi(x_1, \dots, x_n)</math> — его характеристическая функция. | ||
− | Для вычисления объёма сначала сместим | + | Для вычисления объёма сначала сместим начало системы координат в точку <math>p</math>, |
а затем заменим базис на <math>\{\vec{a_i}\}_{i=0}^n</math>. | а затем заменим базис на <math>\{\vec{a_i}\}_{i=0}^n</math>. | ||
+ | В новой системе координат параллелепипед будет областью <math>\left[0,1\right]^n</math>. | ||
<math> \displaystyle | <math> \displaystyle | ||
− | x_i = \sum_{j=1}^n (a_j - p)_i \ | + | x_i = \sum_{j=1}^n (a_j - p)_i \xi_j \text{,}\\ |
\frac{\partial x_i}{\partial \xi_j} = (a_j - p)_i \text{,}\\ | \frac{\partial x_i}{\partial \xi_j} = (a_j - p)_i \text{,}\\ | ||
J = | J = | ||
− | \begin{vmatrix} ( | + | \begin{vmatrix} (a_1 - p)_1 & (a_1 - p)_2 & \cdots & (a_1 - p)_n |
− | \\ ( | + | \\ (a_2 - p)_1 & (a_2 - p)_2 & \cdots &(a_2 - p)_n |
\\ \vdots & \vdots & \ddots & \vdots | \\ \vdots & \vdots & \ddots & \vdots | ||
− | \\ (a_n - p) | + | \\ (a_n - p)_1 & (a_n - p)_2 & \cdots &(a_n - p)_n |
\end{vmatrix} = | \end{vmatrix} = | ||
\begin{vmatrix} | \begin{vmatrix} |
Текущая версия на 19:13, 4 сентября 2022
Содержание
Общий случай
Объём в
-мерном пространстве определяется аналогично трехмерному случаю.Определение: |
Объем — это сопоставляемая фигуре численная характеристика, такая, что:
|
За единицу объема принимается объем
-мерного куба с ребром, равным единице.Переход из одной системы координат в другую
Пускай мы посчитали объем в одной системе координат и теперь хотим перейти из нее в другую систему координат. Поскольку объем не инвариантен, он изменится.
Теорема (О замене переменных в | -кратном интеграле):
Пусть даны две -мерные области: в пространстве и в пространстве , ограниченные каждая одной непрерывной — гладкой или кусочно-гладкой — поверхностью. Между ними с помощью формул
устанавливается взаимно однозначное соответствие. Тогда, при обычных предположениях относительно производных и сохранения знака якобианом ,интеграл от непрерывной в функции может быть преобразован по формуле . |
Доказательство: |
Подробное доказательство приведено в учебнике Фихтенгольца[1]. |
Вычисление объема
Объём тела в
-мерном пространстве вычисляется как определённый интеграл,
где
– характеристическая функция геометрического образа тела.Вычисление объема простых фигур
Параллелепипед
Пусть параллелепипед задаётся точкой
, и ЛНЗ векторами , — его характеристическая функция. Для вычисления объёма сначала сместим начало системы координат в точку , а затем заменим базис на . В новой системе координат параллелепипед будет областью .
См. также
Примечания
- ↑ Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, том 3, 2003 г. — 440 c.