Объём

Материал из Викиконспекты
Перейти к: навигация, поиск

Общий случай

Объём в [math]n[/math]-мерном пространстве определяется аналогично трехмерному случаю.

Определение:
Объем — это сопоставляемая фигуре численная характеристика, такая, что:
  1. У одинаковых фигур равные объемы (объем не меняется при движении фигуры как твердого целого);
  2. Если одна фигура состоит из двух, то её объем равен сумме объемов её частей.

За единицу объема принимается объем [math]n[/math]-мерного куба с ребром, равным единице.

Переход из одной системы координат в другую

Пускай мы посчитали объем в одной системе координат и теперь хотим перейти из нее в другую систему координат. Поскольку объем не инвариантен, он изменится.

Теорема (О замене переменных в [math]n[/math]-кратном интеграле):
Пусть даны две [math]n[/math]-мерные области: [math](D)[/math] в пространстве [math]x_1 x_2\dots x_n[/math] и [math](\Delta)[/math] в пространстве [math] \xi_1\xi_2\dots\xi_n[/math], ограниченные каждая одной непрерывной — гладкой или кусочно-гладкой — поверхностью. Между ними с помощью формул

[math] \begin{cases} x_1 = x_1(\xi_1,\xi_2,\dots,\xi_n); \\ x_2 = x_2(\xi_1,\xi_2,\dots,\xi_n); \\ \dotfill \\ x_n = x_n(\xi_1,\xi_2,\dots,\xi_n); \end{cases} [/math]

устанавливается взаимно однозначное соответствие. Тогда, при обычных предположениях относительно производных и сохранения знака якобианом [math] J = \begin{vmatrix} \dfrac{\partial x_1}{\partial \xi_1} & \dfrac{\partial x_2}{\partial \xi_1} & \cdots & \dfrac{\partial x_n}{\partial \xi_1} \\ \dfrac{\partial x_1}{\partial \xi_2} & \dfrac{\partial x_2}{\partial \xi_2} & \cdots &\dfrac{\partial x_n}{\partial \xi_2} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac{\partial x_1}{\partial \xi_n} & \dfrac{\partial x_2}{\partial \xi_n} & \cdots &\dfrac{\partial x_n}{\partial \xi_n} \end{vmatrix} [/math],

интеграл от непрерывной в [math](D)[/math] функции [math]f(x_1, x_2, \dots, x_n)[/math] может быть преобразован по формуле

[math]\displaystyle \idotsint\limits_{(D)}f(x_1, \dots, x_n)\mathrm dx_1\dots \mathrm dx_n = \idotsint\limits_{(\Delta)}f(x_1(\xi_1,\xi_2,\dots,\xi_n), \dots, x_n(\xi_1,\xi_2,\dots,\xi_n))|J|\mathrm d\xi_1\dots \mathrm d\xi_n [/math].
Доказательство:
[math]\triangleright[/math]
Подробное доказательство приведено в учебнике Фихтенгольца[1].
[math]\triangleleft[/math]

Вычисление объема

Объём тела в [math]n[/math]-мерном пространстве вычисляется как определённый интеграл

[math]\displaystyle \idotsint\limits_{\mathbb{R}^n}\chi(x_1, \dots, x_n)\mathrm dx_1\dots \mathrm dx_n [/math],

где [math]\chi(x_1, \dots, x_n)[/math] – характеристическая функция геометрического образа тела.

Вычисление объема простых фигур

Параллелепипед

Пусть параллелепипед задаётся точкой [math]p[/math], и ЛНЗ векторами [math]\{\vec{a_i}\}_{i=0}^n[/math], [math]\chi(x_1, \dots, x_n)[/math] — его характеристическая функция. Для вычисления объёма сначала сместим начало системы координат в точку [math]p[/math], а затем заменим базис на [math]\{\vec{a_i}\}_{i=0}^n[/math]. В новой системе координат параллелепипед будет областью [math]\left[0,1\right]^n[/math].

[math] \displaystyle x_i = \sum_{j=1}^n (a_j - p)_i \xi_j \text{,}\\ \frac{\partial x_i}{\partial \xi_j} = (a_j - p)_i \text{,}\\ J = \begin{vmatrix} (a_1 - p)_1 & (a_1 - p)_2 & \cdots & (a_1 - p)_n \\ (a_2 - p)_1 & (a_2 - p)_2 & \cdots &(a_2 - p)_n \\ \vdots & \vdots & \ddots & \vdots \\ (a_n - p)_1 & (a_n - p)_2 & \cdots &(a_n - p)_n \end{vmatrix} = \begin{vmatrix} a_1 - p \\ a_2 - p \\ \vdots \\ a_n - p \end{vmatrix} = \begin{vmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_n & 1 \\ p & 1 \end{vmatrix} \text{,}\\ \idotsint\limits_{\mathbb{R}^n}\chi(x_1, \dots, x_n)\mathrm dx_1\dots \mathrm dx_n = \idotsint\limits_{\left[0,1\right]^n}\left|J\right|\mathrm d\xi_1 \dots \mathrm d\xi_n = \left|J\right|\text{.} [/math]

См. также

Примечания

  1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, том 3, 2003 г. — 440 c.

Источники информации