Локальные автоматы — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 10 промежуточных версий 3 участников) | |||
Строка 41: | Строка 41: | ||
:Пусть <tex>G</tex> {{---}} граф Майхилла. | :Пусть <tex>G</tex> {{---}} граф Майхилла. | ||
:Построим автомат <tex>\mathcal{A}</tex> следующим образом: | :Построим автомат <tex>\mathcal{A}</tex> следующим образом: | ||
− | :* Добавим вершину <tex> | + | :* Добавим вершину <tex>i</tex> в <tex>G</tex> с ребрами от <tex>i</tex> к каждой стартовой вершине <tex>G</tex>; отметим вершину <tex>i</tex> как стартовое состояние. |
:* Отметим конечные вершины как терминальные состояния. | :* Отметим конечные вершины как терминальные состояния. | ||
:* Отметим каждое ребро результирующего ориентированного графа символом, стоящим в вершине, на которою оно указывает. | :* Отметим каждое ребро результирующего ориентированного графа символом, стоящим в вершине, на которою оно указывает. | ||
Строка 50: | Строка 50: | ||
:Покажем, что полученный автомат конечен. | :Покажем, что полученный автомат конечен. | ||
:Ребра, выходящие из стартового состояния обозначены различными символами, потому что они указывают на вершины, которые, по свойству 3, были отмечены различными символами в исходном автомате. | :Ребра, выходящие из стартового состояния обозначены различными символами, потому что они указывают на вершины, которые, по свойству 3, были отмечены различными символами в исходном автомате. | ||
− | :Если мы рассмотрим любое другое состояние <tex>s</tex>, то два перехода из <tex>s</tex> могут иметь одинаковые метки только в том случае, если в <tex>G</tex> оба ориентированных ребра идут в одну и ту же вершину. Но этого не может быть по | + | :Если мы рассмотрим любое другое состояние <tex> s </tex>, то два перехода из <tex> s </tex> могут иметь одинаковые метки только в том случае, если в <tex>G</tex> оба ориентированных ребра идут в одну и ту же вершину. Но этого не может быть по свойству 1. |
:То есть <tex>\mathcal{A}</tex> {{---}} [[Детерминированные_конечные_автоматы | ДКА]]. По построению он является стандартным локальным автоматом. | :То есть <tex>\mathcal{A}</tex> {{---}} [[Детерминированные_конечные_автоматы | ДКА]]. По построению он является стандартным локальным автоматом. | ||
− | :Теперь просто проверить, что <tex>L(\mathcal{A}) = L(G)</tex>. | + | :Теперь просто проверить, что <tex>L(\mathcal{A}) = L(G) </tex>. |
− | <tex>\Leftarrow</tex> | + | <tex> \Leftarrow </tex> |
− | :Пусть <tex>\mathcal{A} = (S, \Sigma, i, \delta, T)</tex> {{---}} стандартный локальный автомат, стартовое состояние которого не является терминальным. | + | :Пусть <tex> \mathcal{A} = (S, \Sigma, i, \delta, T) </tex> {{---}} стандартный локальный автомат, стартовое состояние которого не является терминальным. |
:Построим по нему граф Майхилла следующим образом: | :Построим по нему граф Майхилла следующим образом: | ||
− | :* Отметим все состояния <tex>\mathcal{A}</tex>, кроме стартового, <tex>input</tex> символами, стоящими на ребрах, входящих в эти состояния. | + | :* Отметим все состояния <tex> \mathcal{A} </tex>, кроме стартового, <tex> input </tex> символами, стоящими на ребрах, входящих в эти состояния. |
− | :* Сотрем все метки на ребрах <tex>\mathcal{A}</tex>. | + | :* Сотрем все метки на ребрах <tex> \mathcal{A} </tex>. |
− | :* Отметим все состояния <tex>s</tex> как начальные вершины, если существует переход из <tex>i</tex> в <tex>s</tex> | + | :* Отметим все состояния <tex> s </tex> как начальные вершины, если существует переход из <tex> i </tex> в <tex> s </tex> |
:* Отметим все терминальные состояния как конечные вершины. | :* Отметим все терминальные состояния как конечные вершины. | ||
− | :* Удалим вершину <tex>i</tex> и все ребра, исходящие из нее. | + | :* Удалим вершину <tex> i </tex> и все ребра, исходящие из нее. |
− | :Назовем полученный граф <tex>G</tex> {{---}} он будет графом Майхилла по построению. Легко проверить, что <tex>L(G) = L(\mathcal{A})</tex>. | + | :Назовем полученный граф <tex> G </tex> {{---}} он будет графом Майхилла по построению. Легко проверить, что <tex> L(G) = L(\mathcal{A}) </tex>. |
}} | }} | ||
Строка 113: | Строка 113: | ||
===Описание=== | ===Описание=== | ||
Дано регулярное выражение <tex>e</tex>. Алгоритм Глушкова строит недетерминированный автомат, который распознает язык <tex>L(e)</tex>, распознаваемый <tex>e</tex>. Построение происходит в несколько шагов: | Дано регулярное выражение <tex>e</tex>. Алгоритм Глушкова строит недетерминированный автомат, который распознает язык <tex>L(e)</tex>, распознаваемый <tex>e</tex>. Построение происходит в несколько шагов: | ||
− | + | ||
− | + | * Линеаризация регулярного выражения. Каждый символ из алфавита, содержащийся в регулярном выражении, переименовывается таким образом, что каждый символ содержится в новом регулярном выражении не более одного раза. Пусть <tex>A</tex> {{---}} исходный алфавит, <tex>B</tex> {{---}} новый алфавит. | |
− | + | ||
− | + | * Вычисление множеств <tex>P(e'), S(e'), N(e')</tex>, где <tex>e'</tex> {{---}} линеаризованное регулярное выражение. <tex>P(e')</tex> {{---}} множество символов, с которых начинается слово из <tex>L(e')</tex>. <tex>S(e')</tex> {{---}} множество символов, на которые оканчивается слово из <tex>L(e')</tex> и <tex>N(e')</tex> {{---}} множество пар символов, которые встречаются в слове из <tex>L(e')</tex>. Более формально: <br><tex>P(e')=\{a\in B\mid aB^*\cap L(e')\ne\emptyset\}</tex>,<br><tex>S(e')=\{a\in B\mid B^*a\cap L(e')\ne\emptyset\}</tex>,<br><tex>N(e')=\{u\in B^2\mid B^*uB^*\cap L(e')\ne\emptyset\}</tex>. | |
− | + | ||
+ | * Вычисление множества <tex>\Lambda(e')</tex> такого что <tex>\Lambda(e')=\{\varepsilon\}\cap L(e')</tex>. | ||
+ | |||
+ | * Вычисление локального языка с заданными множествами и построение по нему автомата. | ||
+ | |||
+ | * Делинеаризация, переименование каждого символа из <tex>B</tex> в соответствующий ему символ из <tex>A</tex>. | ||
+ | |||
===Пример работы=== | ===Пример работы=== | ||
[[Файл:Glushkov_lin_automata.jpg|frame|right|Автомат, построенный в ходе работы алгоритма Глушкова]] | [[Файл:Glushkov_lin_automata.jpg|frame|right|Автомат, построенный в ходе работы алгоритма Глушкова]] | ||
− | Рассмотрим регулярное выражение <tex>e = (a(ab)^*)^* + (ba)^*</tex> | + | Рассмотрим регулярное выражение <tex>e = (a(ab)^*)^* + (ba)^*</tex>: |
− | + | * Линеаризуем его путем добавления индекса к каждому символу: | |
:<tex>e'=(a_1(a_2b_3)^*)^*+(b_4a_5)^*</tex>. | :<tex>e'=(a_1(a_2b_3)^*)^*+(b_4a_5)^*</tex>. | ||
− | + | * Составим множества <tex>P</tex>, <tex>S</tex>, и <tex>N</tex>: | |
:<tex>P(e')=\{a_1,b_4\}</tex>,<br /> | :<tex>P(e')=\{a_1,b_4\}</tex>,<br /> | ||
:<tex>S(e')=\{a_1,b_3,a_5\}</tex>,<br /> | :<tex>S(e')=\{a_1,b_3,a_5\}</tex>,<br /> | ||
Строка 133: | Строка 139: | ||
Так как пустое слово принадлежит языку, то <math>\Lambda(e')=\{\varepsilon\}</math>. | Так как пустое слово принадлежит языку, то <math>\Lambda(e')=\{\varepsilon\}</math>. | ||
− | + | * Автомат локального языка <tex>L'=P'B^*\cap B^*S'\setminus B^*(B^2\setminus N')B^*</tex> содержит начальное состояние, обозначенное как <tex>1</tex>, и состояния для каждого из пяти символов алфавита <tex>B=\{a_1, a_2, b_3, b_4, a_5\}</tex>.<br> | |
В построенном автомате существует переход из <tex>1</tex> (соответствующего пустой строке) в два состояния из <tex>P'</tex>, переход из <tex>a</tex> в <tex>b</tex> если <tex>ab \in N'</tex>, три состояния <math>S'</math> терминальные (как и состояние <tex>1</tex>). | В построенном автомате существует переход из <tex>1</tex> (соответствующего пустой строке) в два состояния из <tex>P'</tex>, переход из <tex>a</tex> в <tex>b</tex> если <tex>ab \in N'</tex>, три состояния <math>S'</math> терминальные (как и состояние <tex>1</tex>). | ||
− | + | * Получим автомат для <tex>L(e)</tex>, удалив индексы, добавленные на первом этапе. | |
== См. также == | == См. также == | ||
Строка 142: | Строка 148: | ||
== Источники информации == | == Источники информации == | ||
− | * Хопкрофт Д., Мотвани Р., Ульман Д. {{---}} Введение в теорию автоматов, языков и вычислений | + | * ''Хопкрофт Д., Мотвани Р., Ульман Д.'' {{---}} Введение в теорию автоматов, языков и вычислений |
− | * Mark V. Lawson {{---}} Finite Automata | + | * ''Mark V. Lawson'' {{---}} Finite Automata |
* [https://en.wikipedia.org/wiki/Glushkov's_construction_algorithm Wikipedia {{---}} Glushkov's construction algorithm] | * [https://en.wikipedia.org/wiki/Glushkov's_construction_algorithm Wikipedia {{---}} Glushkov's construction algorithm] | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Автоматы и регулярные языки]] | [[Категория: Автоматы и регулярные языки]] | ||
+ | [[Категория: Другие автоматы]] |
Текущая версия на 19:11, 4 сентября 2022
Содержание
Описание
Определение: |
Граф Майхилла ориентированный граф, удовлетворяющий свойствам:
| (над алфавитом ) (англ. Myhill graph) —
Пусть — граф Майхилла над алфавитом .
Символ
назовем разрешенным, если им помечена вершина, являющая одновременно начальной и конечной.Не пустая строка
из длиной не менее двух символов, называется разрешенной, если символом отмечена стартовая вершина, а символом — конечная, и для всех в существует ребро .Язык
, распознаваемый графом Майхилла, состоит из всех разрешенных строк из .Покажем, что графы Майхилла могут быть представлены в виде автоматов. Пусть ДКА.
—
Определение: |
Автомат | называется локальным (англ. local automaton, Glushkov automaton), если для любого из множество содержит не более одного элемента.
Определение: |
Локальный автомат | называется стандартным локальным автоматом (англ. standard local automation), если в нем нет перехода в начальное состояние.
Таким образом, автомат является локальным, если для каждого из нет переходов, отмеченных , или если все они ведут в одно состояние.
Покажем, что граф Майхилла может быть преобразован в стандартный локальный автомат таким образом, что распознаваемый им язык не изменится.
Теорема: |
Язык распознается графом Майхилла тогда и только тогда, когда он распознается стандартным локальным автоматом, стартовое состояние которого не является терминальным. |
Доказательство: |
|
Пример
Граф Майхилла, изображенный на рисунке 1 может быть использован для распознавания строк над алфавитом
. По определению, язык, распознаваемый данным графом, состоит из непустых строк, начинающихся и заканчивающихся на .Недетерминированный автомат на рисунке 2 является локальным автоматом и распознает тот же самый язык.
Локальный язык
Рассмотрим язык, распознаваемый стандартным локальным автоматом.
Определение: |
Язык | называется локальным языком (англ. local language), если может быть описан следующим образом:
Другими словами, непустое слово принадлежит локальному языку, если оно начинается с символа из , оканчивается на символ из и не содержит пары символов из множества .
Пусть
— локальный язык. Определим автомат следующим образом:- набор состояний ,
- начальное состояние ,
- терминальные состояния ,
- если и если .
Если
содержит пустую строку, то множество терминальных состояний — .Утверждение: |
Определенный таким образом автомат — стандартный локальный автомат, распознающий . |
Автомат является локальным поскольку для каждого состояния
Здесь — терминальное состояние, . Переход из в определен, поэтому . Для каждого факт, что переход существует, означает что . Следовательно, .Пусть
|
Утверждение: |
Язык, распознаваемый локальным автоматом, является локальным. |
Алгоритм Глушкова
Описание
Дано регулярное выражение
. Алгоритм Глушкова строит недетерминированный автомат, который распознает язык , распознаваемый . Построение происходит в несколько шагов:- Линеаризация регулярного выражения. Каждый символ из алфавита, содержащийся в регулярном выражении, переименовывается таким образом, что каждый символ содержится в новом регулярном выражении не более одного раза. Пусть — исходный алфавит, — новый алфавит.
- Вычисление множеств
,
,
. , где — линеаризованное регулярное выражение. — множество символов, с которых начинается слово из . — множество символов, на которые оканчивается слово из и — множество пар символов, которые встречаются в слове из . Более формально:
- Вычисление множества такого что .
- Вычисление локального языка с заданными множествами и построение по нему автомата.
- Делинеаризация, переименование каждого символа из в соответствующий ему символ из .
Пример работы
Рассмотрим регулярное выражение
:- Линеаризуем его путем добавления индекса к каждому символу:
- .
- Составим множества , , и :
- .
Так как пустое слово принадлежит языку, то
.- Автомат локального языка
В построенном автомате существует переход из
(соответствующего пустой строке) в два состояния из , переход из в если , три состояния терминальные (как и состояние ).- Получим автомат для , удалив индексы, добавленные на первом этапе.
См. также
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений
- Mark V. Lawson — Finite Automata
- Wikipedia — Glushkov's construction algorithm