КНФ — различия между версиями
Haposiwe (обсуждение | вклад) (Добавлена таблица истинность для медианы от 5 аргументов) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 48: | Строка 48: | ||
== Пример построения СКНФ для медианы== | == Пример построения СКНФ для медианы== | ||
+ | === Построение СКНФ для медианы от трех аргументов === | ||
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно <tex>0</tex>. | 1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно <tex>0</tex>. | ||
Строка 100: | Строка 101: | ||
<tex> \langle x,y,z \rangle = ( x \lor y \lor z) \land (\neg{x} \lor y \lor z) \land (x \lor \neg{y} \lor z) \land ( x \lor y \lor \neg{z})</tex> | <tex> \langle x,y,z \rangle = ( x \lor y \lor z) \land (\neg{x} \lor y \lor z) \land (x \lor \neg{y} \lor z) \land ( x \lor y \lor \neg{z})</tex> | ||
− | == | + | === Построение СКНФ для медианы от пяти аргументов === |
− | |||
− | |||
− | |||
− | |||
− | |||
{| class="wikitable" style="width:16cm" border=1 | {| class="wikitable" style="width:16cm" border=1 | ||
Строка 177: | Строка 173: | ||
|} | |} | ||
− | <tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land ( | + | <tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline {x_5}) \land \\ (x_1 \lor x_2 \lor x_3 \lor \overline {x_4} \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor \overline {x_4} \lor \overline {x_5}) \land (x_1 \lor x_2 \lor \overline {x_3} \lor x_4 \lor x_5) \land \\ (x_1 \lor x_2 \lor \overline {x_3} \lor x_4 \lor \overline {x_5}) \land (x_1 \lor x_2 \lor \overline {x_3} \lor \overline {x_4} \lor x_5) \land (x_1 \lor \overline {x_2} \lor x_3 \lor x_4 \lor x_5) \land \\ (x_1 \lor \overline {x_2} \lor x_3 \lor x_4 \lor \overline {x_5}) \land (x_1 \lor \overline {x_2} \lor x_3 \lor \overline {x_4} \lor x_5) \land (x_1 \lor \overline {x_2} \lor \overline {x_3} \lor x_4 \lor x_5) \land (\overline {x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (\overline {x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline {x_5}) \land (\overline {x_1} \lor x_2 \lor x_3 \lor \overline {x_4} \lor x_5) \land (\overline {x_1} \lor x_2 \lor \overline {x_3} \lor x_4 \lor x_5) \land (\overline {x_1} \lor \overline {x_2} \lor x_3 \lor x_4 \lor x_5) </tex> |
+ | |||
+ | ==Примеры СКНФ для некоторых функций== | ||
+ | Стрелка Пирса: <tex> x \downarrow y = (\neg{x} \lor {y}) \land ({x} \lor \neg {y}) \land (\neg {x} \lor \neg {y}) </tex> | ||
+ | |||
+ | Исключающее или: <tex> x \oplus y \oplus z = (\neg {x} \lor \neg {y} \lor z) \land (\neg {x} \lor y \lor \neg {z}) \land (x \lor \neg {y} \lor \neg {z}) \land (x \lor y \lor z)</tex> | ||
+ | |||
== См. также == | == См. также == | ||
Текущая версия на 19:17, 4 сентября 2022
Содержание
КНФ
Определение: |
Простой дизъюнкцией (англ. inclusive disjunction) или дизъюнктом (англ. disjunct) называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза. |
Простая дизъюнкция
- полная, если в неё каждая переменная (или её отрицание) входит ровно один раз;
- монотонная, если она не содержит отрицаний переменных.
Определение: |
Конъюнктивная нормальная форма, КНФ (англ. conjunctive normal form, CNF) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов. |
Пример КНФ:
СКНФ
Определение: |
Совершенная конъюнктивная нормальная форма, СКНФ (англ. perfect conjunctive normal form, PCNF) — это такая КНФ, которая удовлетворяет условиям:
|
Пример СКНФ:
Теорема: |
Для любой булевой функции , не равной тождественной единице, существует СКНФ, ее задающая. |
Доказательство: |
Поскольку инверсия функции равна единице на тех наборах, на которых равна нулю, то СДНФ для можно записать следующим образом: , где обозначает наличие или отсутствие отрицание приНайдём инверсию левой и правой части выражения: Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана. |
Алгоритм построения СКНФ по таблице истинности
- В таблице истинности отмечаем те наборы переменных, на которых значение функции равно .
- Для каждого отмеченного набора записываем дизъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть , то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
- Все полученные дизъюнкции связываем операциями конъюнкции.
Пример построения СКНФ для медианы
Построение СКНФ для медианы от трех аргументов
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно
.x | y | z | |
0 | 0 | 0 | 0 |
---|---|---|---|
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть
, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.x | y | z | ||
0 | 0 | 0 | 0 | |
---|---|---|---|---|
0 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 |
3. Все полученные дизъюнкции связываем операциями конъюнкции.
Построение СКНФ для медианы от пяти аргументов
0 | 0 | 0 | 0 | 0 | 0 | |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | 0 | |
0 | 0 | 0 | 1 | 0 | 0 | |
0 | 0 | 0 | 1 | 1 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 1 | 0 | |
0 | 0 | 1 | 1 | 0 | 0 | |
0 | 0 | 1 | 1 | 1 | 1 | |
0 | 1 | 0 | 0 | 0 | 0 | |
0 | 1 | 0 | 0 | 1 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | |
0 | 1 | 0 | 1 | 1 | 1 | |
0 | 1 | 1 | 0 | 0 | 0 | |
0 | 1 | 1 | 0 | 1 | 1 | |
0 | 1 | 1 | 1 | 0 | 1 | |
0 | 1 | 1 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 0 | 1 | 0 | |
1 | 0 | 0 | 1 | 0 | 0 | |
1 | 0 | 0 | 1 | 1 | 1 | |
1 | 0 | 1 | 0 | 0 | 0 | |
1 | 0 | 1 | 0 | 1 | 1 | |
1 | 0 | 1 | 1 | 0 | 1 | |
1 | 0 | 1 | 1 | 1 | 1 | |
1 | 1 | 0 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | 0 | 1 | |
1 | 1 | 0 | 1 | 1 | 1 | |
1 | 1 | 1 | 0 | 0 | 1 | |
1 | 1 | 1 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 |
Примеры СКНФ для некоторых функций
Стрелка Пирса:
Исключающее или: