Активное обучение — различия между версиями
(→Постановка задачи классификации для активного обучения) |
м (rollbackEdits.php mass rollback) |
||
(не показано 5 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
− | [[Файл: | + | [[Файл:Al_russian_2.png | справа | 480пкс | мини | Схема отбора из выборки в активном обучении]] |
− | '''Активное обучение''' (англ. '' | + | '''Активное обучение''' (англ. ''active learning'') {{---}} область машинного обучения, где алгоритм взаимодействует с некоторым источником информации, или '''оракулом''', способным размечать запрошенные данные. |
Зачастую обращение к оракулу затратно по времени или другим ресурсам, и требуется решить задачу, минимизируя количество обращений к оракулу. | Зачастую обращение к оракулу затратно по времени или другим ресурсам, и требуется решить задачу, минимизируя количество обращений к оракулу. | ||
− | + | Вызов оракула обычно сопровождается привлечением человека или даже группы людей. В этой роли может выступать эксперт, размечающий текстовые документы, изображения или видеозаписи. Помимо временных затрат могут возникнуть и значительные финансовые, например, исследование химического соединения или реакции. | |
− | В связи с этим одной из центральных задач активного обучения становится '''отбор объектов''' (англ. '' | + | В связи с этим одной из центральных задач активного обучения становится '''отбор объектов''' (англ. ''sampling'') {{---}} выбор тех объектов, которые следует отправить оракулу для получения достоверной информации об их классификации. От грамотности отбора зависит время работы алгоритма, качество классификации и затраты на внешние ресурсы. |
+ | Ниже будет рассматриваться задача классификации для активного обучения, но следует отметить, что задача регрессии формализуется аналогично. | ||
== Постановка задачи классификации для активного обучения == | == Постановка задачи классификации для активного обучения == | ||
+ | |||
+ | |||
Дано множество неразмеченных данных: | Дано множество неразмеченных данных: | ||
Строка 29: | Строка 32: | ||
# $X_{unlabeled}$ {{---}} множество еще не размеченных объектов. | # $X_{unlabeled}$ {{---}} множество еще не размеченных объектов. | ||
− | + | # $X_{labeled}$ {{---}} множество размеченных. | |
− | # $X_{labeled}$ {{---}} множество размеченных | ||
− | |||
# $X_{query}$ {{---}} множество объектов, которые подаются на вход оракулу. Заметим, что не всегда $X_{query} \subset X_{unlabeled}$, поскольку алгоритм может сам синтезировать объекты. | # $X_{query}$ {{---}} множество объектов, которые подаются на вход оракулу. Заметим, что не всегда $X_{query} \subset X_{unlabeled}$, поскольку алгоритм может сам синтезировать объекты. | ||
== Основные стратегии == | == Основные стратегии == | ||
− | * '''Отбор объектов из выборки''' (англ. '' | + | * '''Отбор объектов из выборки''' (англ. ''pool-based active learning''). Имеется некоторая выборка, и алгоритм использует объекты из нее в качестве запросов к оракулу. В данной стратегии каждому объекту присваивается степень информативности {{---}} сколько выгоды принесет информация об истинной метке объекта, и оракулу отправляются самые информативные объекты. Описанные ниже методы отбора объектов имеют отношение именно к этой стратегии. |
− | * '''Отбор объектов из потока''' (англ. '' | + | * '''Отбор объектов из потока''' (англ. ''selective sampling''). Алгоритм пользуется не статической выборкой, а потоком данных, и для каждого объекта из потока принимается решение, запрашивать оракула на этом объекте или нет. В случае, если принято решение запросить оракула, объект и его метка используются в дальнейшем обучении модели, в противном случае объект просто отбрасывается. В отличие от отбора объектов из выборки отбор из потока не строит никаких предположений насчет плотности распределения объектов, не хранит сами объекты и работает значительно быстрее. |
− | * '''Синтез объектов''' (англ. '' | + | * '''Синтез объектов''' (англ. ''query synthesis''). Вместо использования заранее заданных объектов, алгоритм сам конструирует объекты и подает их на вход оракулу. Например, если объекты {{---}} это вектора в n-мерном пространстве, разделенные гиперплоскостью и решается задача бинарной классикации, имеет смысл давать оракулу на вход синтезированные вектора, близкие к границе. |
== Методы отбора объектов == | == Методы отбора объектов == | ||
Строка 44: | Строка 45: | ||
=== Выбор по степени неуверенности === | === Выбор по степени неуверенности === | ||
− | Выбор по степени неуверенности (англ. '' | + | Выбор по степени неуверенности (англ. ''uncertainty sampling'') {{---}} метод отбора объектов из выборки, где самыми информативными объектами считаются те, на которых текущий алгоритм меньше всего уверен в верности классификации. Для этого необходимо задать меру неуверенности в классификации на каждом объекте. |
Зафиксируем модель на некотором этапе обучения и обозначим за $P(y | x)$ вероятность того, что объект $x$ принадлежит классу $y$. Приведем основные меры неуверенности для текущей классификации: | Зафиксируем модель на некотором этапе обучения и обозначим за $P(y | x)$ вероятность того, что объект $x$ принадлежит классу $y$. Приведем основные меры неуверенности для текущей классификации: | ||
− | * '''Максимальная энтропия''' (англ. '' | + | * '''Максимальная энтропия''' (англ. ''maximum entropy'') |
:Энтропия классификации на объекте $x$: | :Энтропия классификации на объекте $x$: | ||
Строка 56: | Строка 57: | ||
:Чем больше энтропия {{---}} тем больше неуверенность в классификации. | :Чем больше энтропия {{---}} тем больше неуверенность в классификации. | ||
− | * '''Минимальный отступ''' (англ. '' | + | * '''Минимальный отступ''' (англ. ''smallest margin'') |
:Отступ (англ. ''margin'') от $y_1$ {{---}} самого вероятного класса до $y_2$ {{---}} второго по вероятности класса: | :Отступ (англ. ''margin'') от $y_1$ {{---}} самого вероятного класса до $y_2$ {{---}} второго по вероятности класса: | ||
Строка 64: | Строка 65: | ||
:Очевидно, что если отступ велик, то велика и уверенность, потому что один класс заметно выигрывает у всех остальных. Поэтому имеет смысл запрашивать оракула на объектах с минимальным отступом. | :Очевидно, что если отступ велик, то велика и уверенность, потому что один класс заметно выигрывает у всех остальных. Поэтому имеет смысл запрашивать оракула на объектах с минимальным отступом. | ||
− | * '''Минимальная уверенность''' (англ. '' | + | * '''Минимальная уверенность''' (англ. ''least confidence'') |
:Функция неуверенности: | :Функция неуверенности: | ||
Строка 86: | Строка 87: | ||
=== Отбор по несогласию в комитете === | === Отбор по несогласию в комитете === | ||
− | Отбор по несогласию в комитете (англ. '' | + | Отбор по несогласию в комитете (англ. ''query by comittee'') {{---}} метод, в котором алгоритм оперирует не одной моделью, а сразу несколькими, которые формируют комитет. Каждая из моделей обучена на размеченном множестве и принимает участие в общем голосовании на неразмеченных объектах. Идея состоит в том, что те объекты, на которых модели более всего расходятся в своих решениях, являются самыми информативными. |
Множество моделей {{---}} $A^T = \{a_1, .., a_T\}$. | Множество моделей {{---}} $A^T = \{a_1, .., a_T\}$. | ||
Строка 98: | Строка 99: | ||
=== Сокращение размерности пространства решений === | === Сокращение размерности пространства решений === | ||
− | Сокращение размерности пространства решений (англ. '' | + | Сокращение размерности пространства решений (англ. ''version space reduction'') подразумевает выбор объектов, которые максимально сокращают пространство возможных решений. |
Рассмотрим простой частный случай: пусть имеется выборка точек на отрезке длины $l$, для которых требуется найти пороговый классификатор. Это означает, что заранее известна линейная разделимость выборки {{---}} то есть существует точка $t$, такая что точки $x < t$ принадлежат одному классу, а $x > t$ {{---}} другому. Наивным решением было бы разбиение отрезка на $k$ равных подотрезков, чтобы отправить оракулу по одной точке из каждого подотрезка и получить верный ответ с точностью $\dfrac{l}{k}$. Гораздо лучшим решением является бинарный поиск, который на каждой итерации сокращает пространство возможных решений вдвое, и необходимая точность $d$ достигается за $\log{\dfrac{l}{d}}$ запросов. | Рассмотрим простой частный случай: пусть имеется выборка точек на отрезке длины $l$, для которых требуется найти пороговый классификатор. Это означает, что заранее известна линейная разделимость выборки {{---}} то есть существует точка $t$, такая что точки $x < t$ принадлежат одному классу, а $x > t$ {{---}} другому. Наивным решением было бы разбиение отрезка на $k$ равных подотрезков, чтобы отправить оракулу по одной точке из каждого подотрезка и получить верный ответ с точностью $\dfrac{l}{k}$. Гораздо лучшим решением является бинарный поиск, который на каждой итерации сокращает пространство возможных решений вдвое, и необходимая точность $d$ достигается за $\log{\dfrac{l}{d}}$ запросов. | ||
Строка 104: | Строка 105: | ||
=== Максимизация ожидаемого влияния на модель === | === Максимизация ожидаемого влияния на модель === | ||
− | Пусть текущая модель имеет параметр $\theta$, который мы стремимся оптимизировать, чтобы уменьшить функцию потерь $L$. Тогда имеет смысл запрашивать те объекты, которые максимизируют влияние на модель (англ. '' | + | Пусть текущая модель имеет параметр $\theta$, который мы стремимся оптимизировать, чтобы уменьшить функцию потерь $L$. Тогда имеет смысл запрашивать те объекты, которые максимизируют влияние на модель (англ. ''expected model change''). Степень влияния можно оценивать градиентом функционала потерь {{---}} $\nabla_\theta L$. Тогда мера информативности объекта: |
$\Phi(x) = \sum\limits_y{P(y | x) \cdot || \nabla_\theta L_{+(x, y)} ||}$. | $\Phi(x) = \sum\limits_y{P(y | x) \cdot || \nabla_\theta L_{+(x, y)} ||}$. | ||
Строка 112: | Строка 113: | ||
=== Ожидаемое сокращение ошибки === | === Ожидаемое сокращение ошибки === | ||
− | Идея данного метода (англ. '' | + | Идея данного метода (англ. ''expected error reduction'') состоит в том, чтобы выбрать такой объект, после добавления которого в обучающее множество, максимизируется уверенность в классификации неразмеченной выборки. Уверенность в классификации выражается следующей функцией: |
$\Phi(x) = \sum\limits_{y \in Y}{(P(y | x) \sum\limits_{u \in X}{P(a_{xy}(u) | u)})}$. | $\Phi(x) = \sum\limits_{y \in Y}{(P(y | x) \sum\limits_{u \in X}{P(a_{xy}(u) | u)})}$. | ||
Строка 120: | Строка 121: | ||
== Активное обучение с исследовательскими действиями == | == Активное обучение с исследовательскими действиями == | ||
− | У рассмотренных выше стратегий | + | У рассмотренных выше стратегий отбора есть недостатки: в пространстве $X$ могут оставаться неисследованные области, вследствие чего снижается качество и увеличивается время обучения. Эвристикой, позволяющей решить эту проблему, является выбор случайных объектов, комбинированный с детерминированным выбором по степени информативности. |
− | Есть два алгоритма обертки над любой стратегией отбора {{---}} алгоритм $\varepsilon$-active и алгоритм экспоненциального градиента (англ. '' | + | Есть два алгоритма обертки над любой стратегией отбора {{---}} алгоритм $\varepsilon$-active и алгоритм экспоненциального градиента (англ. ''exponential gradient''). Алгоритм $\varepsilon$-active {{---}} это базовый вариант, в котором предлагается на каждой итерации производить следующие шаги: |
# Выбрать неразмеченный объект $x$ случайно с вероятностью $\varepsilon$ или $x = arg \max\limits_{u \in X}{\Phi(u)}$ с вероятностью $1 - \varepsilon$. <br> Здесь $\Phi(u)$ обозначает степень неуверенности на объекте $u$. | # Выбрать неразмеченный объект $x$ случайно с вероятностью $\varepsilon$ или $x = arg \max\limits_{u \in X}{\Phi(u)}$ с вероятностью $1 - \varepsilon$. <br> Здесь $\Phi(u)$ обозначает степень неуверенности на объекте $u$. |
Текущая версия на 19:06, 4 сентября 2022
Активное обучение (англ. active learning) — область машинного обучения, где алгоритм взаимодействует с некоторым источником информации, или оракулом, способным размечать запрошенные данные.
Зачастую обращение к оракулу затратно по времени или другим ресурсам, и требуется решить задачу, минимизируя количество обращений к оракулу.
Вызов оракула обычно сопровождается привлечением человека или даже группы людей. В этой роли может выступать эксперт, размечающий текстовые документы, изображения или видеозаписи. Помимо временных затрат могут возникнуть и значительные финансовые, например, исследование химического соединения или реакции.
В связи с этим одной из центральных задач активного обучения становится отбор объектов (англ. sampling) — выбор тех объектов, которые следует отправить оракулу для получения достоверной информации об их классификации. От грамотности отбора зависит время работы алгоритма, качество классификации и затраты на внешние ресурсы.
Ниже будет рассматриваться задача классификации для активного обучения, но следует отметить, что задача регрессии формализуется аналогично.
Постановка задачи классификации для активного обучения
Дано множество неразмеченных данных:
$X = \{x_1, ..., x_n\}$,
Множество меток:
$Y = \{y_1, ..., y_m\}$,
Оракул:
$O : X \rightarrow Y$ — функция, которая по объекту возвращает его метку.
Требуется восстановить функцию $a : X \rightarrow Y$, минимизируя количество обращений к оракулу.
На каждой итерации алгоритм фиксирует три множества:
- $X_{unlabeled}$ — множество еще не размеченных объектов.
- $X_{labeled}$ — множество размеченных.
- $X_{query}$ — множество объектов, которые подаются на вход оракулу. Заметим, что не всегда $X_{query} \subset X_{unlabeled}$, поскольку алгоритм может сам синтезировать объекты.
Основные стратегии
- Отбор объектов из выборки (англ. pool-based active learning). Имеется некоторая выборка, и алгоритм использует объекты из нее в качестве запросов к оракулу. В данной стратегии каждому объекту присваивается степень информативности — сколько выгоды принесет информация об истинной метке объекта, и оракулу отправляются самые информативные объекты. Описанные ниже методы отбора объектов имеют отношение именно к этой стратегии.
- Отбор объектов из потока (англ. selective sampling). Алгоритм пользуется не статической выборкой, а потоком данных, и для каждого объекта из потока принимается решение, запрашивать оракула на этом объекте или нет. В случае, если принято решение запросить оракула, объект и его метка используются в дальнейшем обучении модели, в противном случае объект просто отбрасывается. В отличие от отбора объектов из выборки отбор из потока не строит никаких предположений насчет плотности распределения объектов, не хранит сами объекты и работает значительно быстрее.
- Синтез объектов (англ. query synthesis). Вместо использования заранее заданных объектов, алгоритм сам конструирует объекты и подает их на вход оракулу. Например, если объекты — это вектора в n-мерном пространстве, разделенные гиперплоскостью и решается задача бинарной классикации, имеет смысл давать оракулу на вход синтезированные вектора, близкие к границе.
Методы отбора объектов
Выбор по степени неуверенности
Выбор по степени неуверенности (англ. uncertainty sampling) — метод отбора объектов из выборки, где самыми информативными объектами считаются те, на которых текущий алгоритм меньше всего уверен в верности классификации. Для этого необходимо задать меру неуверенности в классификации на каждом объекте.
Зафиксируем модель на некотором этапе обучения и обозначим за $P(y | x)$ вероятность того, что объект $x$ принадлежит классу $y$. Приведем основные меры неуверенности для текущей классификации:
- Максимальная энтропия (англ. maximum entropy)
- Энтропия классификации на объекте $x$:
- $\Phi_{ENT}(x) = - \sum\limits_y{P(y | x) \log{P(y | x)}}$.
- Чем больше энтропия — тем больше неуверенность в классификации.
- Минимальный отступ (англ. smallest margin)
- Отступ (англ. margin) от $y_1$ — самого вероятного класса до $y_2$ — второго по вероятности класса:
- $\Phi_{M}(x) = P(y_1 | x) - P(y_2 | x)$.
- Очевидно, что если отступ велик, то велика и уверенность, потому что один класс заметно выигрывает у всех остальных. Поэтому имеет смысл запрашивать оракула на объектах с минимальным отступом.
- Минимальная уверенность (англ. least confidence)
- Функция неуверенности:
- $\Phi_{LC}(x) = 1 - P(y_1 | x)$,
- $y_1$ — наиболее вероятный класс. Интересующие нас объекты — объекты с минимальной уверенностью, то есть с максимальным $\Phi_{LC}$.
Заметим, что в случае бинарной классификации эти методы эквивалентны.
Взвешивание по плотности
Одной из проблем описанного выше метода может являться то, что алгоритм часто будет отдавать оракулу шумы — те объекты, которые не соответствуют основному распределению в выборке. Так как шумы являются нетипичными в контексте выборки объектами, модель может быть неуверена в их классификации, в то время как для решения основной задачи их классификация не очень полезна. Вокруг шумов плотность распределения мала, и вследствие этого применяется эвристика взвешивание по плотности где предпочтение отдается тем объектам, в которых плотность больше.
Таким образом, наиболее информативными объектами будут считаться:
$x_{informative} = arg \max\limits_x{\Phi(x) p(x)}$,
где $\Phi(x)$ — мера неуверенности, а $p(x)$ — эмпирическая плотность в точке $x$.
Отбор по несогласию в комитете
Отбор по несогласию в комитете (англ. query by comittee) — метод, в котором алгоритм оперирует не одной моделью, а сразу несколькими, которые формируют комитет. Каждая из моделей обучена на размеченном множестве и принимает участие в общем голосовании на неразмеченных объектах. Идея состоит в том, что те объекты, на которых модели более всего расходятся в своих решениях, являются самыми информативными.
Множество моделей — $A^T = \{a_1, .., a_T\}$.
Алгоритм выбирает те объекты, на которых достигается максимум энтропии:
$x_{informative} = arg \min\limits_x{P(y | x) \log{P(y | x)}}$.
Здесь $P(y | x) = \frac{1}{T} \sum\limits_{a \in A^T}{[a(x) = y]}$.
Сокращение размерности пространства решений
Сокращение размерности пространства решений (англ. version space reduction) подразумевает выбор объектов, которые максимально сокращают пространство возможных решений.
Рассмотрим простой частный случай: пусть имеется выборка точек на отрезке длины $l$, для которых требуется найти пороговый классификатор. Это означает, что заранее известна линейная разделимость выборки — то есть существует точка $t$, такая что точки $x < t$ принадлежат одному классу, а $x > t$ — другому. Наивным решением было бы разбиение отрезка на $k$ равных подотрезков, чтобы отправить оракулу по одной точке из каждого подотрезка и получить верный ответ с точностью $\dfrac{l}{k}$. Гораздо лучшим решением является бинарный поиск, который на каждой итерации сокращает пространство возможных решений вдвое, и необходимая точность $d$ достигается за $\log{\dfrac{l}{d}}$ запросов.
Максимизация ожидаемого влияния на модель
Пусть текущая модель имеет параметр $\theta$, который мы стремимся оптимизировать, чтобы уменьшить функцию потерь $L$. Тогда имеет смысл запрашивать те объекты, которые максимизируют влияние на модель (англ. expected model change). Степень влияния можно оценивать градиентом функционала потерь — $\nabla_\theta L$. Тогда мера информативности объекта:
$\Phi(x) = \sum\limits_y{P(y | x) \cdot || \nabla_\theta L_{+(x, y)} ||}$.
Здесь $L_{+(x, y)}$ обозначает функцию потерь на выборке дополненной парой $(x, y)$. При этом естественно предполагать, что на каждой итерации модель обучена, и параметр $\theta$ оптимален, что значит, что $\nabla_\theta L \simeq 0$. Заметим также, что если $L$ линейно зависит от одномерных функций потерь по каждому объекту, например $L$ — среднее квадратичное отклонение, тогда остается посчитать градиент $L$ всего в одной точке — $x$, поскольку $L_{+(x, y)} = L_T + L_{(x, y)} \simeq L_{(x, y)}$ вместо подсчета $L$ на всем тренировочном множестве $T$.
Ожидаемое сокращение ошибки
Идея данного метода (англ. expected error reduction) состоит в том, чтобы выбрать такой объект, после добавления которого в обучающее множество, максимизируется уверенность в классификации неразмеченной выборки. Уверенность в классификации выражается следующей функцией:
$\Phi(x) = \sum\limits_{y \in Y}{(P(y | x) \sum\limits_{u \in X}{P(a_{xy}(u) | u)})}$.
Формула выше может быть интерпретирована как матожидание уверенности нового классификатора (учитывающего метку объекта $x$) на оставшемся неразмеченном множестве. Существует мнение, что этот метод более устойчив, чем предыдущие, поскольку он не склонен подавать на вход оракулу шумы, и явно увеличивает уверенность классификатора.
Активное обучение с исследовательскими действиями
У рассмотренных выше стратегий отбора есть недостатки: в пространстве $X$ могут оставаться неисследованные области, вследствие чего снижается качество и увеличивается время обучения. Эвристикой, позволяющей решить эту проблему, является выбор случайных объектов, комбинированный с детерминированным выбором по степени информативности.
Есть два алгоритма обертки над любой стратегией отбора — алгоритм $\varepsilon$-active и алгоритм экспоненциального градиента (англ. exponential gradient). Алгоритм $\varepsilon$-active — это базовый вариант, в котором предлагается на каждой итерации производить следующие шаги:
- Выбрать неразмеченный объект $x$ случайно с вероятностью $\varepsilon$ или $x = arg \max\limits_{u \in X}{\Phi(u)}$ с вероятностью $1 - \varepsilon$.
Здесь $\Phi(u)$ обозначает степень неуверенности на объекте $u$. - Запросить оракула на объекте $x$ и получить его метку $y$.
- Дообучить текущую модель на еще одном примере $\langle x, y \rangle$.
Алгоритм экспоненциального градиента является улучшением $\varepsilon$-active. Идея состоит в том, что параметр $\varepsilon$ выбирается случайно из конечного множества, где каждому элементу присвоены вероятности. По ходу алгоритма экспоненциально увеличиваются вероятности наиболее успешных $\varepsilon$, что несколько напоминает алгоритм Adaboost по принципу работы.