Метрическое пространство — различия между версиями
Rybak (обсуждение | вклад) м (черт) |
м (rollbackEdits.php mass rollback) |
||
(не показано 11 промежуточных версий 5 участников) | |||
Строка 8: | Строка 8: | ||
{{Определение | {{Определение | ||
+ | |id=def1 | ||
|definition= | |definition= | ||
Отображение <tex> \rho : X \times X \rightarrow \mathbb{R^+} </tex> {{---}} называется '''метрикой''' на <tex>X</tex>, если выполняются аксиомы | Отображение <tex> \rho : X \times X \rightarrow \mathbb{R^+} </tex> {{---}} называется '''метрикой''' на <tex>X</tex>, если выполняются аксиомы | ||
Строка 51: | Строка 52: | ||
Пусть <tex> b \in V_{r_1}(a_1) \cap V_{r_2}(a_2)</tex>. Тогда <tex> \exists r > 0:\ V_r(b) \subset \ V_{r_1}(a_1) \cap V_{r_2}(a_2)</tex> <br \> | Пусть <tex> b \in V_{r_1}(a_1) \cap V_{r_2}(a_2)</tex>. Тогда <tex> \exists r > 0:\ V_r(b) \subset \ V_{r_1}(a_1) \cap V_{r_2}(a_2)</tex> <br \> | ||
− | Простыми словами: Если два открытых шара пересекаются, то существует открытый шар, лежащий в | + | Простыми словами: Если два открытых шара пересекаются, то для любой точки из их пересечения существует открытый шар, лежащий в пересечении и содержащий эту точку. |
|proof= | |proof= | ||
Замечание: для <tex>X = \mathbb{R}</tex> это очевидно (переcечение двух интервалов есть интервал). | Замечание: для <tex>X = \mathbb{R}</tex> это очевидно (переcечение двух интервалов есть интервал). | ||
Строка 59: | Строка 60: | ||
Для <tex> V_{r_1} </tex> | Для <tex> V_{r_1} </tex> | ||
: <tex> \rho (b, a_1) < r_1</tex> | : <tex> \rho (b, a_1) < r_1</tex> | ||
− | : <tex> \exists r > 0: \rho (y, b) < r \Rightarrow \rho (y, a_1) < r_1 </tex> | + | : <tex> \exists ? r > 0: \rho (y, b) < r \Rightarrow \rho (y, a_1) < r_1 </tex> |
: <tex> \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) < r_1 \Rightarrow \rho (y, b) < r_1 - \rho(b, a_1) = d_1,\ d_1 > 0 </tex> | : <tex> \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) < r_1 \Rightarrow \rho (y, b) < r_1 - \rho(b, a_1) = d_1,\ d_1 > 0 </tex> | ||
Для <tex> V_{r_2} </tex> | Для <tex> V_{r_2} </tex> | ||
: <tex> \rho (b, a_2) < r_2</tex> | : <tex> \rho (b, a_2) < r_2</tex> | ||
− | : <tex> \exists r > 0: \rho (y, b) < r \Rightarrow \rho (y, a_2) < r_2 </tex> | + | : <tex> \exists ? r > 0: \rho (y, b) < r \Rightarrow \rho (y, a_2) < r_2 </tex> |
: <tex> \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) < r_2 \Rightarrow \rho (y, b) < r_2 - \rho(b, a_2) = d_2,\ d_2 > 0 </tex> | : <tex> \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) < r_2 \Rightarrow \rho (y, b) < r_2 - \rho(b, a_2) = d_2,\ d_2 > 0 </tex> | ||
<tex> r = \min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара | <tex> r = \min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара | ||
Строка 83: | Строка 84: | ||
Доказательство свойства 3: | Доказательство свойства 3: | ||
− | + | : Докажем для двух множеств. Тогда, очевидно, это будет верно и для <tex>n</tex> множеств. | |
: <tex> G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} </tex> | : <tex> G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} </tex> | ||
: <tex> G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) </tex> | : <tex> G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) </tex> | ||
Строка 123: | Строка 124: | ||
<tex> x_n \rightarrow x', x_n \rightarrow x'' </tex> в МП<tex>(X, \rho) \Rightarrow x' = x'' </tex> | <tex> x_n \rightarrow x', x_n \rightarrow x'' </tex> в МП<tex>(X, \rho) \Rightarrow x' = x'' </tex> | ||
|proof= | |proof= | ||
− | <tex> \rho(x', x'') \leq \rho(x', | + | <tex> \rho(x', x'') \leq \rho(x', x_n) + \rho(x'', x_n) \Rightarrow \rho(x', x'') = 0 \Rightarrow x' = x'' </tex> |
На самом деле, этот факт {{---}} свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа: | На самом деле, этот факт {{---}} свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа: | ||
Строка 141: | Строка 142: | ||
В прямую сторону | В прямую сторону | ||
|statement= | |statement= | ||
− | <tex>F</tex> {{---}} замкнуто, | + | Если <tex>F</tex> {{---}} замкнуто, то оно содержит в себе пределы всех своих сходящихся последовательностей.<br> |
− | <tex>F</tex> {{---}} замкнуто <tex> \Longrightarrow \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F </tex> | + | Если <tex>F</tex> {{---}} замкнуто <tex> \Longrightarrow \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F </tex>. |
|proof=<br /> | |proof=<br /> | ||
: Пусть <tex> x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V </tex> | : Пусть <tex> x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V </tex> | ||
Строка 153: | Строка 154: | ||
В обратную сторону | В обратную сторону | ||
|statement= | |statement= | ||
− | Если множество <tex>F</tex> содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто. <br> | + | Если множество <tex>F</tex> содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто.<br> |
− | Если <tex>\forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F \Longrightarrow | + | Если <tex>\forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F \Longrightarrow\ F</tex> {{---}} замкнуто. |
|proof= | |proof= | ||
− | + | Пусть <tex> G = \overline F </tex>. Достаточно доказать, что <tex> G </tex> {{---}} открытое. Тогда <tex> F </tex> {{---}} [[#Замкнутые множества|по определению]] замкнутое множество. | |
+ | |||
+ | Докажем от противного. | ||
− | + | Если <tex> G </tex> {{---}} открытое множество, то тогда каждый <tex> y \notin F </tex> входит в <tex> G </tex> вместе с каким-то открытым шаром (по определению {{---}} <tex> G = \bigcup\limits_i V_i </tex> {{---}} открытое множество), причём всегда можно выделить такой шар, что <tex> y </tex> является его центром (достаточно положить <tex> r' = r - \rho (x, y) </tex>, где <tex> x </tex> {{---}} центр шара, в который входит <tex> y </tex>, а <tex> r </tex> {{---}} его радиус). | |
+ | <br>При этом, <tex> F \cap G = \varnothing \Rightarrow \forall i: V_i \cap F = \varnothing </tex>. | ||
Предположим, что это не так, и для какого-то <tex> x \notin F </tex> не найдется такого открытого шара <tex> V(x): x \in V_r(x) , \, V_r(x) \cap F = \varnothing </tex> | Предположим, что это не так, и для какого-то <tex> x \notin F </tex> не найдется такого открытого шара <tex> V(x): x \in V_r(x) , \, V_r(x) \cap F = \varnothing </tex> |
Текущая версия на 19:07, 4 сентября 2022
Содержание
Метрика и метрическое пространство
Пусть множество.
— абстрактное— прямое произведение множества на себя
Определение: |
Отображение
| — называется метрикой на , если выполняются аксиомы
Если на определена метрика, то пара называется метрическим пространством, аббревиатура — МП.
Примеры метрических пространств
Числовая ось:
То есть, одно и то же множество можно по-разному превращать в метрическое пространство.
Открытые шары
Для метрических пространств основное значение имеют открытые шары.
Определение: |
Пусть | — метрическое пространство, пусть , тогда открытый шар радиуса в точке — это множество
Пример открытого шара
На числовой оси:
Определение: |
Множество | ограничено, если существуют и , такие, что . Иначе говоря, множество ограничено, если его можно поместить в открытый шар конечного радиуса.
Свойства шаров
Теорема (Основное свойство шаров): |
Пусть . Тогда Простыми словами: Если два открытых шара пересекаются, то для любой точки из их пересечения существует открытый шар, лежащий в пересечении и содержащий эту точку. |
Доказательство: |
Замечание: для это очевидно (переcечение двух интервалов есть интервал).Пусть Для Для |
Открытые множества
Определение: |
Множество
| называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
Свойства открытых множеств
- — все пространство и пустое множество открыты
- — очевидно
Доказательство свойства 3:
- Докажем для двух множеств. Тогда, очевидно, это будет верно и для множеств.
- По основному свойству шаров:
- Следовательно — объединение открытых шаров — тоже объединение открытых шаров по 2 свойству.
Класс
называется (метрической) топологией на множестве .Если в
выделен класс множеств , удовлетворяющий всем трем свойствам, то пара называется топологическим пространством(ТП). В этом смысле МП — частный случай ТП.Замкнутые множества
Определение: |
Множество | называется замкнутым в МП , если — открыто.
Применяя закон де Моргана, видим что класс открытых множеств двойственен классу замкнутых множеств.
Свойства замкнутых множеств
- — замкнуты
- Если — замкнуто , то — замкнуто
- Если — замкнуты, то — замкнуто
Предел в метрическом пространстве
Определение: |
| в МП , если:
Теорема (Единственность предела): |
в МП |
Доказательство: |
На самом деле, этот факт — свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа: Пусть — ТП, тогда еслиТогда в таком ТП выполнима аксиома отделимости Хаусдорфа. Частный случай на МП:
|
Основное характеристическое свойство замкнутых множеств
Утверждение (В прямую сторону): |
Если — замкнуто, то оно содержит в себе пределы всех своих сходящихся последовательностей.Если — замкнуто . |
|
Утверждение (В обратную сторону): |
Если множество содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто.Если — замкнуто. |
Пусть по определению замкнутое множество. . Достаточно доказать, что — открытое. Тогда —Докажем от противного. Если Предположим, что это не так, и для какого-то не найдется такого открытого шараЗапишем это формально: .Определим следующие последовательности:
|