Теорема Дирака — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Лемма о длине цикла)
(Метки: правка с мобильного устройства, правка из мобильной версии)
м (rollbackEdits.php mass rollback)
 
(не показано 5 промежуточных версий 5 участников)
Строка 1: Строка 1:
==Нохчо любит ослов салам алейкум в туза==
+
9м топ остальным по лицу хлоп
  
 
==Альтернативное доказательство==
 
==Альтернативное доказательство==

Текущая версия на 19:33, 4 сентября 2022

9м топ остальным по лицу хлоп

Альтернативное доказательство

Теорема (Дирак — альтернативное доказательство):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Для [math]\forall k[/math] верна импликация [math]d_k \leqslant k \lt n/2 \Rightarrow d_{n-k} \geqslant n-k[/math], поскольку левая её часть всегда ложна. Тогда по теореме Хватала [math]G[/math] — гамильтонов граф.
[math]\triangleleft[/math]
Теорема (Вывод из теоремы Оре):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Возьмем любые неравные вершины [math] u, v \in G [/math]. Тогда [math] \displaystyle \deg u + \deg v \geqslant \frac n 2 + \frac n 2 = n [/math]. По теореме Оре [math] G [/math] — гамильтонов граф.
[math]\triangleleft[/math]

См. также

Источники информации

  • Wikipedia — Dirac's Theorem
  • Graham, R.L., Groetschel M., and Lovász L., eds. (1996). Handbook of Combinatorics, Volumes 1 and 2. Elsevier (North-Holland), Amsterdam, and MIT Press, Cambridge, Mass. ISBN 0-262-07169-X.