КНФ — различия между версиями
Permenko (обсуждение | вклад) |
Permenko (обсуждение | вклад) |
||
Строка 42: | Строка 42: | ||
== Ссылки == | == Ссылки == | ||
* [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 Википедия — свободная энциклопедия] | * [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 Википедия — свободная энциклопедия] | ||
+ | * [http://dvo.sut.ru/libr/himath/w163rabk/index.htm Е.Л Рабкин, Ю.Б. Фарфоровская — Дискретная математика] |
Версия 08:44, 12 октября 2011
Определение: |
КНФ (Конъюнктивная Нормальная Форма) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких дизъюнктов. |
Пример КНФ:
Определение: |
СКНФ (Совершенная Конъюнктивная Нормальная Форма) — это такая КНФ, которая удовлетворяет условиям:
|
Пример СКНФ:
Теорема: |
Для любой булевой функции , не равной тождественной единице, существует СКНФ, ее задающая. |
Доказательство: |
Поскольку инверсия функции равна единице на тех наборах, на которых равна нулю, то СДНФ для можно записать следующим образом: , где обозначает наличие или отсутствие отрицание приНайдём инверсию левой и правой части выражения: Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, то теорема доказана. |
Алгоритм построения СКНФ по таблице истинности
- В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0.
- Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть 0, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
- Все полученные дизъюнкции связываем операциями конъюнкции.
Примеры СКНФ для некоторых функций
Стрелка Пирса:
Медиана трёх: