Лемма Огдена — различия между версиями
Строка 5: | Строка 5: | ||
# либо <tex>u</tex> и <tex>v</tex>, либо <tex>y</tex> и <tex>z</tex> обе содержат выделенные позиции; | # либо <tex>u</tex> и <tex>v</tex>, либо <tex>y</tex> и <tex>z</tex> обе содержат выделенные позиции; | ||
# <tex>vxy</tex> содержат не более <tex>n</tex> выделенных позиций; | # <tex>vxy</tex> содержат не более <tex>n</tex> выделенных позиций; | ||
− | # существует <tex>A \in | + | # существует <tex>A \in N</tex>, такой что <tex>S \Rightarrow^{+} uAz \Rightarrow^{+} uvAyz \Rightarrow^{+} uvxyz</tex>. |
|proof= | |proof= | ||
Введем следующие обозначения: <tex>m = |N|</tex> и <tex>l</tex> — длина самой длинной правой части правила из <tex>P</tex>. Тогда в качестве <tex>n</tex> возьмем <tex>l^{2m + 3}</tex>. Рассмотрим дерево разбора <tex>T</tex> для произвольного слова <tex>\omega \in L(\Gamma)</tex>, у которого <tex>|\omega| \ge n</tex>. В силу выбора <tex>n</tex> в <tex>T</tex> будет по крайне мере один путь от корня до листа длины не менее <tex>2m + 3</tex>. Произвольным образом выделим в <tex>\omega</tex> не менее <tex>n</tex> позиций. Соответствующие этим позициям листья дерева <tex>T</tex> будем называть выделенными. | Введем следующие обозначения: <tex>m = |N|</tex> и <tex>l</tex> — длина самой длинной правой части правила из <tex>P</tex>. Тогда в качестве <tex>n</tex> возьмем <tex>l^{2m + 3}</tex>. Рассмотрим дерево разбора <tex>T</tex> для произвольного слова <tex>\omega \in L(\Gamma)</tex>, у которого <tex>|\omega| \ge n</tex>. В силу выбора <tex>n</tex> в <tex>T</tex> будет по крайне мере один путь от корня до листа длины не менее <tex>2m + 3</tex>. Произвольным образом выделим в <tex>\omega</tex> не менее <tex>n</tex> позиций. Соответствующие этим позициям листья дерева <tex>T</tex> будем называть выделенными. |
Версия 08:21, 24 января 2012
Лемма: |
Для каждой контекстно-свободный грамматики существует такое , что для любого слова длины не менее и для любых выделенных в не менее позиций может быть представлено в виде , причем:
|
Доказательство: |
Введем следующие обозначения: и — длина самой длинной правой части правила из . Тогда в качестве возьмем . Рассмотрим дерево разбора для произвольного слова , у которого . В силу выбора в будет по крайне мере один путь от корня до листа длины не менее . Произвольным образом выделим в не менее позиций. Соответствующие этим позициям листья дерева будем называть выделенными.Пусть — корень , а — сын , который имеет среди своих потомков наибольшее число выделенных листьев (если таких несколько, то самый правый из них). Рассмотрим — путь от корня до листа.Будем называть ветвящейся ту вершину, у которой по крайне мере два сына имеют выделенных потомков. Докажем по индукции, что если среди Поскольку имеет хотя бы выделенных потомков, то содержит по крайне мере ветвящиеся вершин. Заметим, что — лист, поэтому . Будем называть левой ветвящейся вершиной, если ее сын, не принадлежащий пути , имеет выделенного потомка, лежащего слева от . В противном случае назовем правой ветвящейся вершиной. Рассмотрим последние вершины, принадлежащие пути . Предположим, что хотя бы вершины — левые ветвящиеся (случай, когда хотя бы вершины правые ветвистые, разбирается аналогично). Пусть — последние левые ветвящиеся вершины. Поскольку , то среди них можно найти как минимум две вершины, соответствующие одному нетерминалу. Обозначим эти вершины и , причем — потомок . Тогда на рисунке показано, как представить в требуемом виде.
|