КНФ — различия между версиями
(→СКНФ) |
(→Пример построения СКНФ) |
||
Строка 48: | Строка 48: | ||
# Все полученные дизъюнкции связываем операциями конъюнкции. | # Все полученные дизъюнкции связываем операциями конъюнкции. | ||
− | == Пример построения СКНФ == | + | == Пример построения СКНФ для медианы== |
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0. | 1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0. | ||
Строка 82: | Строка 82: | ||
! 0 || 0 || 0 || 0 || <tex>( x \lor y \lor z)</tex> | ! 0 || 0 || 0 || 0 || <tex>( x \lor y \lor z)</tex> | ||
|-align="center" bgcolor=#F0F0F0 | |-align="center" bgcolor=#F0F0F0 | ||
− | ! 0 || 0 || 1 || 0 || <tex>( x \lor y \lor \ | + | ! 0 || 0 || 1 || 0 || <tex>( x \lor y \lor \neg{z})</tex> |
|-align="center" bgcolor=#F0F0F0 | |-align="center" bgcolor=#F0F0F0 | ||
− | ! 0 || 1 || 0 || 0 || <tex>(x \lor \ | + | ! 0 || 1 || 0 || 0 || <tex>(x \lor \neg{y} \lor z)</tex> |
|-align="center" bgcolor=#F0F0F0 | |-align="center" bgcolor=#F0F0F0 | ||
| 0 || 1 || 1 || 1 || | | 0 || 1 || 1 || 1 || | ||
|-align="center" bgcolor=#F0F0F0 | |-align="center" bgcolor=#F0F0F0 | ||
− | ! 1 || 0 || 0 || 0 || <tex>(\ | + | ! 1 || 0 || 0 || 0 || <tex>(\neg{x} \lor y \lor z)</tex> |
|-align="center" bgcolor=#F0F0F0 | |-align="center" bgcolor=#F0F0F0 | ||
| 1 || 0 || 1 || 1 || | | 1 || 0 || 1 || 1 || | ||
Строка 99: | Строка 99: | ||
3. Все полученные дизъюнкции связываем операциями конъюнкции. | 3. Все полученные дизъюнкции связываем операциями конъюнкции. | ||
− | <tex> \langle x,y,z \rangle = ( x \lor y \lor z) \land (\ | + | <tex> \langle x,y,z \rangle = ( x \lor y \lor z) \land (\neg{x} \lor y \lor z) \land (x \lor \neg{y} \lor z) \land ( x \lor y \lor \neg{z})</tex> |
==Примеры СКНФ для некоторых функций== | ==Примеры СКНФ для некоторых функций== |
Версия 20:13, 12 марта 2012
Содержание
КНФ
Определение: |
Простой дизъюнкцией или дизъюнктом называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза. |
Простая дизъюнкция
- полная, если в неё каждая переменная (или её отрицание) входит ровно 1 раз;
- монотонная, если она не содержит отрицаний переменных.
Определение: |
КНФ (Конъюнктивная Нормальная Форма) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов. |
Пример КНФ:
СКНФ
Определение: |
СКНФ (Совершенная Конъюнктивная Нормальная Форма) — это такая КНФ, которая удовлетворяет условиям:
|
Пример СКНФ:
Теорема: |
Для любой булевой функции , не равной тождественной единице, существует СКНФ, ее задающая. |
Доказательство: |
Поскольку инверсия функции равна единице на тех наборах, на которых равна нулю, то СДНФ для можно записать следующим образом: , где обозначает наличие или отсутствие отрицание приНайдём инверсию левой и правой части выражения: Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, то теорема доказана. |
Алгоритм построения СКНФ по таблице истинности
- В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0.
- Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть 0, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
- Все полученные дизъюнкции связываем операциями конъюнкции.
Пример построения СКНФ для медианы
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0.
x | y | z | |
0 | 0 | 0 | 0 |
---|---|---|---|
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть 0, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
x | y | z | ||
0 | 0 | 0 | 0 | |
---|---|---|---|---|
0 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 |
3. Все полученные дизъюнкции связываем операциями конъюнкции.
Примеры СКНФ для некоторых функций
Стрелка Пирса:
Исключающее или: