Цифровая сортировка — различия между версиями
Warrior (обсуждение | вклад) м (→Алгоритм) |
Warrior (обсуждение | вклад) м (→Ссылки) |
||
Строка 37: | Строка 37: | ||
== Ссылки == | == Ссылки == | ||
− | * [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2005 | + | * [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2005 Визуализатор 1] — Java-аплет. |
− | * [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2001 | + | * [http://rain.ifmo.ru/cat/view.php/vis/sorts/linear-2001 Визуализатор 2] — Java-аплет. |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Сортировки]] | [[Категория: Сортировки]] |
Версия 22:46, 20 мая 2012
Цифровая сортировка — один из алгоритмов сортировки, использующих внутреннюю структуру сортируемых объектов.
Алгоритм
При цифровой сортировке данные разбиваются на "разряды", после чего они сортируются какой-либо устойчивой сортировкой по каждому разряду, в порядке от младшего разряда к старшему. Для чисел наиболее часто в качестве устойчивой сортировки применяют сортировку подсчетом.
Корректность алгоритма
Докажем, что данный алгоритм работает верно, используя метод математической индукции по номеру разряда. Пусть
— количество разрядов в сортируемых объектах.- База: . Очевидно, что алгоритм работает верно, потому что в таком случае мы просто сортируем младшие разряды какой-то заранее выбранной стабильной сортировкой.
- Переход: Пусть для алгоритм правильно отсортировал элементы по младшим разрядам. Покажем, что в таком случае, при сортировке по -ому разряду, объекты также будут отсортированы в правильном порядке. Вспомогательная сортировка разобьет все объекты на группы, в которых -ый разряд объектов одинаковый. Рассмотрим такие группы. Для сортировки по отдельным разрядам мы используем стабильную сортировку, следовательно порядок объектов с одинаковым -ым разрядом не изменился. Но по предположению индукции по предыдущим разрядам объекты были отсортированы правильно, и поэтому в каждой такой группе объекты будут отсортированы верно. Также верно, что сами группы находятся в правильном относительно друг друга порядке, а, следовательно, и все элементы отсортированы правильно по -ым младшим разрядам.
Псевдокод
В качестве примера рассмотрим сортировку чисел. Как говорилось выше, в такой ситуации в качестве стабильной сортировки применяют сортировку подсчетом, так как обычно количество различных значений разрядов не превосходит количества сортируемых элементов. Ниже приведен псевдокод цифровой сортировки, которой подается массив
-разрядных чисел размера . Функция возвращает -ый разряд числа . Так же считаем, что значения разрядов меньше .radixSort(A) for i = 1 to m for j = 0 to k - 1 // обнуление вспомогательного массива С, C[j] = 0; // использующегося в качестве счетчика for j = 0 to n - 1 C[digit(A[j], i)] = C[digit(A[j], i)] + 1; for j = 1 to k - 1 C[j] = C[j] + C[j - 1]; for j = n - 1 to 0 // заполняем вспомогательный массив B, в котором после каждой итерации B[C[digit(A[j], i)]] = A[j]; // внешнего цикла числа отсортированы по младшим i битам C[digit(A[j], i)] = C[digit(A[j], i)] - 1; A = B;
Сложность
Пусть
— количество разрядов, — количество объектов, которые нужно отсортировать, — время работы устойчивой сортировки. Цифровая сортировка выполняет итераций, на каждой из которой выполняется устойчивая сортировка и не более других операций. Следовательно время работы цифровой сортировки — .Рассмотрим отдельно случай сортировки чисел. Пусть в качестве аргумента сортировке передается массив, в котором содержатся
-значных чисел, и каждая цифра может принимать значения от до . Тогда цифровая сортировка позволяет отсортировать данный массив за время , если устойчивая сортировка имеет время работы . Если небольшое, то оптимально выбирать в качестве устойчивой сортировки сортировку подсчетом.Если количество разрядов — константа, а
, то сложность цифровой сортировки составляет , то есть она линейно зависит от количества сортируемых чисел.Литература
- Дональд Кнут Искусство программирования, том 3. Сортировка и поиск
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ
Ссылки
- Визуализатор 1 — Java-аплет.
- Визуализатор 2 — Java-аплет.