Visibility graph и motion planning — различия между версиями
Igorjan94 (обсуждение | вклад) м |
Igorjan94 (обсуждение | вклад) м |
||
Строка 25: | Строка 25: | ||
В общем тут все очевидно. Тут мы просто двигаем не точку, а произвольный выпуклый полигон. Если мы его не можем вращать, просто "обводим" препятствия нашим полигоном (запиливаем [[Сумма Минковского (определение, вычисление)|сумму Минковского]] препятствий и полигона) и получаем другие препятствия, но зато теперь мы двигаем точку. А это мы уже научились делать выше. | В общем тут все очевидно. Тут мы просто двигаем не точку, а произвольный выпуклый полигон. Если мы его не можем вращать, просто "обводим" препятствия нашим полигоном (запиливаем [[Сумма Минковского (определение, вычисление)|сумму Минковского]] препятствий и полигона) и получаем другие препятствия, но зато теперь мы двигаем точку. А это мы уже научились делать выше. | ||
− | Если же этот полигон можно вращать, то делаем примерно то же самое, только как-то по-хитрому. Нам про это, кажется не рассказывали(или так же :)) | + | Если же этот полигон можно вращать, то делаем примерно то же самое, только как-то по-хитрому. Нам про это, кажется, не рассказывали(или рассказывали так же:)) |
== Источники == | == Источники == |
Версия 00:50, 7 января 2014
Конспект написан не до конца, но основные вещи уже есть. |
Visibility graph
В общем, когда мы ищем путь от точки трапецоидную карту, соединить ребрами середины вертикальных сторон с центрами трапецоидов и в этом графе Дейкстрой найти путь от до . Но этот путь не будет кратчайшим(кэп).
до с препятствиями (надо уточнить, что двигаем мы точку, а не какой-то полигон), можно построитьЛемма: |
Любой кратчайший путь от до с полигональными препятствиями представляет собой ломаную, вершины которой — вершины полигонов. |
Доказательство: |
Пусть путь проходит(в смысле вершины) через какую-то другую точку. Рассмотрим окрестность этой точки. По неравенству треугольника мы сможем немножко, да срезать. Значит этот путь не кратчайший. Противоречие, значит лемма доказана и все офигенно. |
По этой лемме запилим visibility graph. Его вершины — вершины полигонов. Между вершинами
и существует ребро, если из видна (mutually visible) (ребра полигонов тоже входят в этот граф). Теперь, если мы добавим к множеству вершин и (и ребра в видимые вершины), у нас получится граф, в котором опять же Дейкстрой находим кратчайший путь. По лемме любое ребро кратчайшего пути — ребро visibility графа, так что мы нашли то, что нужно.Построение visibility графа
Если делать в тупую наивно, т. е. для каждой пары вершин проверять можно ли добавить ли такое ребро(нет ли пересечений с полигонами), будет (зато просто пилится).
Motion planning
В общем тут все очевидно. Тут мы просто двигаем не точку, а произвольный выпуклый полигон. Если мы его не можем вращать, просто "обводим" препятствия нашим полигоном (запиливаем сумму Минковского препятствий и полигона) и получаем другие препятствия, но зато теперь мы двигаем точку. А это мы уже научились делать выше.
Если же этот полигон можно вращать, то делаем примерно то же самое, только как-то по-хитрому. Нам про это, кажется, не рассказывали(или рассказывали так же:))
Источники
- Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars (2008), Computational Geometry: Algorithms and Applications (3rd edition), Springer-Verlag, ISBN 978-3-540-77973-5 Chapter 15 page 324-331