LL(k)-грамматики, множества FIRST и FOLLOW — различия между версиями
Shersh (обсуждение | вклад) (добавлено введение, поправлено определение) |
Shersh (обсуждение | вклад) (добавлены определения множеств FIRST и FOLLOW) |
||
Строка 11: | Строка 11: | ||
* <tex> S \Rightarrow^* p A \beta \Rightarrow p \alpha \beta \Rightarrow^* p y \eta </tex> | * <tex> S \Rightarrow^* p A \beta \Rightarrow p \alpha \beta \Rightarrow^* p y \eta </tex> | ||
* <tex> S \Rightarrow^* p A \beta \Rightarrow p \alpha' \beta \Rightarrow^* p y \xi </tex> | * <tex> S \Rightarrow^* p A \beta \Rightarrow p \alpha' \beta \Rightarrow^* p y \xi </tex> | ||
− | где <tex> S </tex> {{---}} стартовый нетерминал грамматики, <tex> p </tex> и <tex> y </tex> {{---}} цепочки из терминалов, уже разобранная часть слова <tex> w </tex>, <tex> A </tex> {{---}} нетерминал грамматики, в которой есть правила <tex> A \rightarrow \alpha </tex> и <tex> A \rightarrow \alpha' </tex>, <tex> \alpha, \alpha', \beta, \eta, \xi </tex> {{---}} последовательности из терминалов и нетерминалов.<br> | + | где <tex> S </tex> {{---}} стартовый нетерминал грамматики, <tex> p </tex> и <tex> y </tex> {{---}} цепочки из терминалов, уже разобранная часть слова <tex> w </tex>, <tex> A </tex> {{---}} нетерминал грамматики, в которой есть правила <tex> A \rightarrow \alpha </tex> и <tex> A \rightarrow \alpha' </tex>, причём <tex> \alpha, \alpha', \beta, \eta, \xi </tex> {{---}} последовательности из терминалов и нетерминалов.<br> |
Тогда если при выполнении условий, что <tex> |y| = k </tex> или <tex> |y| < k, \eta = \xi = \varepsilon </tex>, верно, что <tex> \alpha = \alpha' </tex>, то <tex> \Gamma </tex> называется '''LL(k)-грамматикой'''. | Тогда если при выполнении условий, что <tex> |y| = k </tex> или <tex> |y| < k, \eta = \xi = \varepsilon </tex>, верно, что <tex> \alpha = \alpha' </tex>, то <tex> \Gamma </tex> называется '''LL(k)-грамматикой'''. | ||
}} | }} | ||
+ | Неформально это означает, что если мы уже вывели какой-то префикс разбираемого слова, то, посмотрев на следующие <tex> k </tex> cимволов, сможем одназначно выбрать правило вывода. | ||
+ | {{TODO | t = картинка}} | ||
− | { | + | LL(1)-грамматика является частным случаем. Её определение почти такое же, только вместо строки <tex> y </tex> один символ <tex> c \in \Sigma \cup \{\varepsilon\} </tex>. |
− | {{ | + | |
+ | == FIRST и FOLLOW == | ||
+ | Ключевую роль в построении парсеров для LL(1)-грамматик играю множества <tex> \mathrm{FIRST} </tex> и <tex> \mathrm{FOLLOW} </tex>. | ||
+ | |||
+ | Пусть <tex> c </tex> {{---}} символ из алфавита <tex> \Sigma </tex>, <tex> \alpha,\ \beta </tex> {{---}} строки из нетерминалов и терминалов (возможно пустые), <tex> S,\ A </tex> {{---}} нетерминалы грамматики (начальное и произвольное соответственно), <tex> \$ </tex> {{---}} символ окончания слова. Также будем считать, что в грамматике нет [[Удаление бесполезных символов из грамматики | недостижимых правил]]. Тогда определим <tex> \mathrm{FIRST} </tex> и <tex> \mathrm{FOLLOW} </tex> следующим образом: | ||
+ | {{Определение | ||
+ | |id=deffirst | ||
+ | |definition= | ||
+ | <tex> \mathrm{FIRST}(\alpha) = \{c \mid \alpha \Rightarrow^* c \beta \} \cup \{ \varepsilon\ \mathrm{if}\ \alpha \Rightarrow^* \varepsilon \} </tex> | ||
+ | }} | ||
+ | {{Определение | ||
+ | |id=deffirst | ||
+ | |definition= | ||
+ | <tex> \mathrm{FOLLOW}(A) = \{c \mid S \Rightarrow^* \alpha A c \beta \} \cup \{ \$ \mathrm{if}\ \S \Rightarrow^* \alpha A \} </tex> | ||
+ | }} | ||
+ | Другими словами, <tex> \mathrm{FIRST}(\alpha) </tex> {{---}} все символы (терминалы), с которых могут начинаться всевозможные выводы из <tex> \alpha </tex>, а <tex> \mathrm{FOLLOW}(A) </tex> {{---}} всевозможные символы, которые встречаются после нетерминала <tex> A </tex> во всех правилах грамматики. | ||
+ | === Примеры === | ||
+ | {{TODO | t = Какие-нибудь примеры}} | ||
+ | == Теорема о связи LL(1)-грамматики с множествами FIRST и FOLLOW == | ||
{{TODO | t = Теорема об LL(1)-грамматиках}} | {{TODO | t = Теорема об LL(1)-грамматиках}} | ||
{{TODO | t = Пара следствий}} | {{TODO | t = Пара следствий}} | ||
− | + | ||
+ | == См. также == | ||
+ | == Источники информации == | ||
+ | * | ||
+ | |||
+ | |||
+ | [[Категория: Методы трансляции]] | ||
+ | [[Категория: Нисходящий разбор]] |
Версия 00:52, 28 июня 2014
Наибольший интерес в построении синтаксических анализаторов (парсеров) представляют LL(1)-грамматики, так как для них возможно построение нисходящих парсеров без возврата, то есть без корректировки выбранных правил в грамматике. LL(1)-грамматики являются подмножеством КС-грамматик. Однако для достаточно большого количества формальных языков можно построить LL(1)-грамматику, например, для языка арифметических выражений и даже для некоторых языков программирования, в частности можно и для языка Java.
Содержание
LL(k)-грамматика
Дадим теперь формально определение LL(k)-грамматики.
Определение: |
Пусть где | — КС-грамматика. Рассмотрим возникновение следующей ситуации во время левостороннего вывода в этой грамматике слова :
Неформально это означает, что если мы уже вывели какой-то префикс разбираемого слова, то, посмотрев на следующие
cимволов, сможем одназначно выбрать правило вывода.TODO: картинка
LL(1)-грамматика является частным случаем. Её определение почти такое же, только вместо строки
один символ .FIRST и FOLLOW
Ключевую роль в построении парсеров для LL(1)-грамматик играю множества
и .Пусть недостижимых правил. Тогда определим и следующим образом:
— символ из алфавита , — строки из нетерминалов и терминалов (возможно пустые), — нетерминалы грамматики (начальное и произвольное соответственно), — символ окончания слова. Также будем считать, что в грамматике нетОпределение: |
Определение: |
Другими словами,
— все символы (терминалы), с которых могут начинаться всевозможные выводы из , а — всевозможные символы, которые встречаются после нетерминала во всех правилах грамматики.Примеры
TODO: Какие-нибудь примеры
Теорема о связи LL(1)-грамматики с множествами FIRST и FOLLOW
TODO: Теорема об LL(1)-грамматиках
TODO: Пара следствий